精英家教网 > 高中数学 > 题目详情

设函数f(x)=(1+x)2-2ln(1+x)(1)若对任意的x∈[0,1],不等式f(x)-m≤0都成立,求实数m的最小值;(2)求函数g(x)=f(x)-x2-x在区间[0,2]上的极值.

解:(1)设f(x)在[0,1]上的最大值是f(x)max
∵对任意的x∈[0,1],不等式f(x)-m≤0都成立,
∴f(x)max≤m.

当x∈[0,1]时,f′(x)≥0,
故f(x)在[0,1]内为增函数.
∴f(x)max=f(1)=4-2ln2,
∴m≥4-2ln2,
即实数m的最小值是4-2ln2.
(2)∵g(x)=f(x)-x2-x=1+x-2ln(1+x),

当x>1时,g′(x)>0;当-1<x<1时,g′(x)<0,
∴g(x)在[0,1]上是减函数,在(1,2]上是增函数,
∴g(x)在[0,2]上的极小值为g(1)=2-2ln2.
分析:(1)设f(x)在[0,1]上的最大值是f(x)max,由对任意的x∈[0,1],不等式f(x)-m≤0都成立,知f(x)max≤m.由导数性质能求出f(x)max=f(1)=4-2ln2,由此能求出实数m的最小值.
(2)由g(x)=f(x)-x2-x=1+x-2ln(1+x),知.所以g(x)在[0,1]上是减函数,在(1,2]上是增函数,由此能求出g(x)在[0,2]上的极小值.
点评:本题考查实数m的最小值的求法和函数的极值的计算,考查利用导数求函数的最值的运算,考查运算求解能力,考查推理论证能力,考查函数与方程思想,考查转化化归思想.综合性强,难度大,计算繁琐,易出错,是高考的重点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区二模)记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素.
(1)判断函数f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)设函数f(x)=log2(1-2x),求f(x)的反函数f-1(x),并判断f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素,
例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素,并求f(x)的反函数f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步练习册答案