精英家教网 > 高中数学 > 题目详情

已知函数数学公式(x∈[1,+∞)且m<1).
(Ⅰ)用定义证明函数f(x)在[1,+∞)上为增函数;
(Ⅱ)设函数数学公式,若[2,5]是g(x)的一个单调区间,且在该区间上g(x)>0恒成立,求实数m的取值范围.

(Ⅰ)证明:设1≤x1<x2<+∞,
=(x1-x2)(
∵1≤x1<x2<+∞,m<1,
∴x1-x2<0,>0,
∴f(x1)<f(x2
∴函数f(x)在[1,+∞)上为增函数.
(Ⅱ)解:
对称轴,定义域x∈[2,5]
①g(x)在[2,5]上单调递增,且g(x)>0,

②g(x)在[2,5]上单调递减,且g(x)>0,
无解
综上所述
分析:(Ⅰ)设1≤x1<x2<+∞,=(x1-x2)(),由1≤x1<x2<+∞,m<1,能够证明函数f(x)在[1,+∞)上为增函数.
(Ⅱ),对称轴,定义域x∈[2,5],由此进行分类讨论,能够求出实数m的取值范围.
点评:本题考查函数的恒成立问题的性质和应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=1-
42ax+a
(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求a的值;  
(2)当x∈(0,1]时,t•f(x)≥2x-2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(Ⅰ)若函数在区间(a,a+
1
2
)
(其中a>0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(Ⅲ)求证.
n
k=1
[lnk+ln(k+1)]>
n2-n+1
n+1
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=|x-1|+|x-2|+…+|x-2009|,则下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)若函数f(x)区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
(n∈N*,e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
-1,x>0
0,x=0
1,x<0
,函数f(x)=x2?g(x),则满足不等式f(a-2)+f(a2)>0的实数a的取值范围是(  )
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步练习册答案