分析 求出圆心到直线的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,利用勾股定理,建立方程,即可求出k.
解答 解:圆心到直线的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,
∵AB=$\frac{2}{5}$$\sqrt{5}$,
∴($\frac{|2k|}{\sqrt{{k}^{2}+1}}$)2+($\frac{\sqrt{5}}{5}$)2=1,
∴k=±$\frac{1}{2}$,
∵k>0,
∴k=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查直线与圆的位置关系,考查勾股定理的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\frac{4\sqrt{5}}{5}$ | D. | 4$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-11,-1] | B. | [-11,0] | C. | [-11,-6]∪(-6,-1] | D. | [-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com