精英家教网 > 高中数学 > 题目详情
15.已知直线y=kx(k>0)与圆C:(x-2)2+y2=1相交于A,B两点,若AB=$\frac{2}{5}$$\sqrt{5}$则k=$\frac{1}{2}$.

分析 求出圆心到直线的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,利用勾股定理,建立方程,即可求出k.

解答 解:圆心到直线的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,
∵AB=$\frac{2}{5}$$\sqrt{5}$,
∴($\frac{|2k|}{\sqrt{{k}^{2}+1}}$)2+($\frac{\sqrt{5}}{5}$)2=1,
∴k=±$\frac{1}{2}$,
∵k>0,
∴k=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查直线与圆的位置关系,考查勾股定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.椭圆4x2+5y2=1的左、右焦点为F,F′,过F′的直线与椭圆交于M,N,则△MNF的周长为(  )
A.2B.4C.$\frac{4\sqrt{5}}{5}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线E:y2=2px(p>0)上一点M(x0,4)到交点F的距离|MF|=$\frac{5}{4}$x0
(1)求E的方程;
(2)过F的直线l与E相交于A、B两点,AB的垂直平分线l′与E相较于C、D两点,若$\overrightarrow{AC}$•$\overrightarrow{AD}$=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若两平行直线2x+y-4=0与y=-2x-m-2间的距离不大于$\sqrt{5}$,则m的取值范围是(  )
A.[-11,-1]B.[-11,0]C.[-11,-6]∪(-6,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知三棱柱ABC-A1B1C1,CB⊥平面BAA1B1,且四边形BAA1B1是正方形,M,N分别是AA1,BC的中点.
(I)求证:AB1⊥CA1
(Ⅱ)求证:AN∥平面MB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示在五棱锥P-ABCDE中,侧棱PA⊥底面ABCDE,∠EAB=∠ABC=∠DEA=90°,AB=AE=2,BC=DE=1.求证:BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$cos($\frac{π}{2}$-x)cos(2π-x)-cos2x.
(1)求函数f(x)的单凋递增区间;
(2)若θ∈[0,$\frac{π}{2}$],f($\frac{θ}{2}$+$\frac{π}{3}$)=$\frac{3}{10}$,求tan(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式x(|x|-1)<0的解集是(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若二次函数f(x)满足f(1)=f(3)=3,且它的图象与x轴相交于A,B两点,且|AB|=4.
(1)求f(x)的解析式;
(2)若f(x)在区间[m,4]上的值域为[-5,4],求m的值.

查看答案和解析>>

同步练习册答案