【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.
(1)求的方程;
(2)若点在上,过作的两弦与,若,求证: 直线过定点.
科目:高中数学 来源: 题型:
【题目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线:(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且与相交于两点.
(1)当时,判断直线与曲线的位置关系,并说明理由;
(2)当变化时,求弦的中点的普通方程,并说明它是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:的焦点为,平行于轴的两条直线,分别交于,两点,交的准线于,两点.
(1)若在线段上,是的中点,证明:;
(2)若△的面积是△的面积的两倍,求中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,分别为椭圆:()的左、右两个焦点.
(1)若椭圆上的点到,两点的距离之和等于,求椭圆的方程和焦点坐标;
(2)设点是(1)中所得椭圆上的动点,,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.点为圆上异于的任意一点,直线与轴交于点,直线与轴交于点.
(1)求圆的方程;
(2)求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于两个不同的点.
(1)求曲线的方程;
(2)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为,的面积为,令,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com