精英家教网 > 高中数学 > 题目详情
若某多面体的三视图(单位:cm),如图所示,其中正视图与俯视图均为等腰三角形,则此多面体的表面积是(  )cm2
A、5
2
B、32+12
2
C、15
D、5+2
3
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱锥.
解答: 解:三视图的长为6,高为4,宽为4.该几何体为三棱锥,
其底面面积为
1
2
×6×4=12,
含直角边的两个侧面的面积相等,其和为
1
2
×
32+42
×4×2=20,
不含直角边的侧面面积为
1
2
×6×
42+42
=12
2

则此多面体的表面积为12+20+12
2
=32+12
2

故选B.
点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、命题“若α=β,则sinα=sinβ”的逆命题为真命题
B、已知命题p:函数f(x)=tanx的定义域为{x|x≠kπ,k∈Z},命题q:?x∈R,x2-x+1≥0;则命题p∧q为真命题
C、“a=2”是“直线y=-ax+2与直线y=
a
4
x-1垂直”的必要不充分条件
D、命题“?x∈R,使得x2+2x+3<0”的否定形式是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数满足f(0)=1,且在x=2处取得最小值-3.
(1)求f(x)的解析式;
(2)若y=f(x)+2ax在[-1,1]上是单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b-a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意的x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(-1)=2
(1)求f(0)的值并判断函数单调性
(2)求函数f(x)在[-3,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<a},B={x|1<x<2},且A∪(∁RB)=R,则实数a的取值范围是(  )
A、a≤1B、a<1
C、a≥2D、a>2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图所示,则这个几何体的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(sinx,cosx),
b
=(cosx,cosx),x∈R,函数f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期与最大值;
(Ⅱ)求函数f(x)的单调递增区间和对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2+12y=0的焦点到其准线的距离是
 

查看答案和解析>>

同步练习册答案