精英家教网 > 高中数学 > 题目详情

【题目】在,根据下列条件解三角形,其中有两个解的是( )

A. b="10," A=450, C=600 B. a=6, c=5, B=600

C. a=7, b=5, A=600 D. a=14, b="16," A=450

【答案】C

【解析】试题分析:解:A∵A=45°C=70°∴B=65°,又b=10

由正弦定理得,此时三角形只有一解,不合题意;

B∵a=60c=48B=60°由余弦定理得:

此时三角形有一解,不合题意;

C∵a=7b=5A=80°由正弦定理,又ba∴BA=80°

∴B只有一解,不合题意;

D∵a=14b=16A=45°由正弦定理∵ab

∴45°=AB∴B有两解,符合题意,故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

1)若用线性回归模型拟合的关系,求关于的线性回归方程;

2)用二次函数回归模型拟合的关系,可得回归方程:

经计算二次函数回归模型和线性回归模型的分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.

参数数据及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考山东理数】已知.

I)讨论的单调性;

II)当时,证明对于任意的成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,令函数,求函数上的极大值、极小值;

(Ⅱ)若函数上恒为单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为2.10元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元.已知甲、乙两用户该月用水量分别为5x,3x吨.

(1)y关于x的函数;

(2)如甲、乙两户该月共交水费40.8元,分别求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知).

(Ⅰ)求证:

(Ⅱ)若不等式时恒成立,求最小正整数,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,用KA1A2三类不同的元件连接成一个系统.当K正常工作且A1A2至少有一个正常工作时,系统正常工作,已知KA1A2正常工作的概率依次是0.90.80.8,则系统正常工作的概率为( )

A. 0.960 B. 0.864 C. 0.720 D. 0.576

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知设函数

(1)求 的定义域;

(2)判断 的奇偶性并予以证明;

(3)求使 的取值范围.

查看答案和解析>>

同步练习册答案