精英家教网 > 高中数学 > 题目详情

【题目】已知可导函数y=f(x)在点P(x0 , f(x0))处切线为l:y=g(x)(如图),设F(x)=f(x)﹣g(x),则(  )

A.F′(x0)=0,x=x0是F(x)的极大值点
B.F′(x0)=0,x=x0是F(x)的极小值点
C.F′(x0)≠0,x=x0不是F(x)的极值点
D.F′(x0)≠0,x=x0是F(x)的极值点

【答案】B
【解析】∵可导函数y=f(x)在点P(x0 , f(x0))处切线为l:y=g(x),
∴F(x)=f(x)﹣g(x)在x0处先减后增,
∴F′(x0)=0,
x=x0是F(x)的极小值点.
故选B.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的图象为 关于点对称的图象为 对应的函数为

(Ⅰ)求的解析式;

(Ⅱ)若直线只有一个交点,求的值和交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn , 数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(1)求{an}和{bn}的通项公式.
(2)令Cn=nbn(n∈N+),求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上上分别写着数字1,2,3,5,同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和.

1)求事件不小于6”的概率;

2为奇数的概率和为偶数的概率是不是相等?证明你作出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,点 分别是棱 上的点,且

(Ⅰ)证明:平面平面

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)
(1)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(2)在(1)的条件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= sinxcsox+cos2x+m
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[﹣ ]时,函数f(x)的最小值为2,求函数f(x)的最大值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,根据下列条件解三角形,则其中有两个解的是(
A.b=10,A=45°,B=60°
B.a=60,c=48,B=120°
C.a=7,b=5,A=75°
D.a=14,b=16,A=45°

查看答案和解析>>

同步练习册答案