精英家教网 > 高中数学 > 题目详情

【题目】已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn , 数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(1)求{an}和{bn}的通项公式.
(2)令Cn=nbn(n∈N+),求{cn}的前n项和Tn

【答案】
(1)解:设公差为d,公比为q,

则a2b2=(3+d)q=12①

S3+b2=3a2+b2=3(3+d)+q=20②

联立①②可得,(3d+7)(d﹣3)=0

∵{an}是单调递增的等差数列,d>0.

则d=3,q=2,

∴an=3+(n﹣1)×3=3n,bn=2n1


(2)解:bn=2n1,cn=n2n1

∴Tn=c1+c2+…+cnTn=120+221+322+…+n2n12Tn=121+222+…+(n﹣1)2n1+n2n分)

两式相减可得,﹣Tn=120+121+122+…+12n1﹣n2n∴﹣Tn= =2n﹣1﹣n2n

∴Tn=(n﹣1)2n+1


【解析】(1)设公差为d,公比为q,则a2b2=(3+d)q=12①,S3+b2=3a2+b2=3(3+d)+q=20②,,联立①②结合d>0可求d,q,利用等差数列,等比数列的通项公式可求an , bn(2)由(1)可得,bn=2n1 , cn=n2n1 , 考虑利用错位相减求解数列的和即可
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】方程(x+y﹣1)=0所表示的曲线是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2,0), =(1,4).

(Ⅰ)若向量k+2平行,求实数k的值;

(Ⅱ)若向量k+2的夹角为锐角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,直线

相切,且直线 与椭圆

相交于两点, 为原点。

1)若直线过椭圆的左焦点,且与圆交于

两点,且,求直线的方程;

2)如图,若的重心恰好在圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ax3|xa|aR

1)若a=-1,求函数yf(x) (x [0,+∞))的图象在x1处的切线方程;

2)若g(x)x4,试讨论方程f(x)g(x)的实数解的个数;

3)当a0时,若对于任意的x1 [aa2],都存在x2 [a2,+∞),使得f(x1)f(x2)1024,求满足条件的正整数a的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,直线经过点相交于两点.

(1)若,求证: 必为的焦点;

(2)设,若点上,且的最大值为,求的值;

(3)设为坐标原点,若,直线的一个法向量为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2+2x﹣4y﹣6=0的圆心和半径分别是(
A.(﹣1,﹣2),11
B.(﹣1,2),11
C.(﹣1,﹣2),
D.(﹣1,2),

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知可导函数y=f(x)在点P(x0 , f(x0))处切线为l:y=g(x)(如图),设F(x)=f(x)﹣g(x),则(  )

A.F′(x0)=0,x=x0是F(x)的极大值点
B.F′(x0)=0,x=x0是F(x)的极小值点
C.F′(x0)≠0,x=x0不是F(x)的极值点
D.F′(x0)≠0,x=x0是F(x)的极值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求证:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.

查看答案和解析>>

同步练习册答案