精英家教网 > 高中数学 > 题目详情
(2010•桂林二模)已知f(x)=
1
3
ax3-2x2+cx的导函数的值域为[0,+∞),是
a
c2+4
+
c
a2+4
的最小值为(  )
分析:先求函数的导函数f′(x)=ax2-4x+c,由导函数的值域为[0,+∞),可得a>0,且ac=4,利用均值定理a+c≥2
ac
=4,再将所求代数式通分化简为关于(a+c)的函数,最后设t=a+c利用换元法,结合导数求得函数的最小值
解答:解:f(x)=
1
3
ax3-2x2+cx的导数为f′(x)=ax2-4x+c
∵导函数的值域为[0,+∞),
a>0
△=16-4ac=0

解得:
a>0
ac=4

a
c2+4
+
c
a2+4
=
a3+c3 +4(a+c)
(c2+4)(a2+4)
=
a3+c3 +4(a+c)
a2c2+4(a2+c2)+16
=
(a+c)[(a+c)2-3ac+4]
16+4(a+c)2-8ac+16

=
(a+c)[(a+c)2-3ac+4]
4(a+c)2
=
(a+c)3-8(a+c)
4(a+c)2
=
a+c
4
-
2
a+c

设t=a+c≥2
ac
=4,∴t∈[4,+∞)
a
c2+4
+
c
a2+4
=
t
4
-
2
t

设g(t)=
t
4
-
2
t
  t∈[4,+∞)
g′(t)=
1
4
+
2
t2
>0,
∴g(t)在 t∈[4,+∞)为增函数
∴g(t)∈[
1
2
,+∞)
a
c2+4
+
c
a2+4
的最小值为
1
2

故选C
点评:本题考察了导函数的求法,二次函数图象和性质,均值定理的应用以及换元法求函数的值域的方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•桂林二模)已知抛物线x2=12y的准线过双曲线
x2
m2
-y2=-1
的一个焦点,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)已知复数z=1+i(i是虚数单位),则
2
z2
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)在等比数列{an} 中,若a1和a2是一元二次方程x2-4x+3=0的两个根,则a5等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)下列所给的有关命题中,说法错误的命题是(  )

查看答案和解析>>

同步练习册答案