科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2011-2012年浙江省高一第一学期期中考试数学 题型:解答题
已知
(
,
为此函数的定义域)同时满足下列两个条件:①函数
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数
(1)判断函数
是否为闭函数?并说明理由;
(2)求证:函数
(
)为闭函数;
(3)若
是闭函数,求实数
的取值范围
查看答案和解析>>
科目:高中数学 来源:2014届北京师大附中高一上学期期末考试数学试卷 题型:解答题
函数
的定义域关于原点对称,但不包括数0,对定义域中的任意实数
,在定义域中存在
使
,
,且满足以下3个条件。
(1)
是
定义域中的数,
,则![]()
(2)
,(
是一个正的常数)
(3)当
时,
。
证明:(1)
是奇函数;
(2)
是周期函数,并求出其周期;
(3)
在
内为减函数。
查看答案和解析>>
科目:高中数学 来源:2010年湖北省高一期中考试数学试卷 题型:解答题
(本小题满分14分)已知
(
,
为此函数的定义域)同时满足下列两个条件:①函数
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数;
请解答以下问题:
(1) 求闭函数
符合条件②的区间
;
(2) 判断函数
是否为闭函数?并说明理由;
(3)若
是闭函数,求实数
的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com