精英家教网 > 高中数学 > 题目详情
已知两定点为A,B且|AB|=4,动点P到两定点的距离之比为
12

(1)适当建立直角坐标系,并求动点P的轨迹方程C
(2)若直线l的斜率k=1且与曲线C相切,求直线l的方程.
分析:(1)先依据条件建立恰当的直角坐标系,设P为(x,y),依据题中条件:“距离之比”列关于x,y的方程式,化谙即可得点P的轨迹方程.
(2)设出切线方程,利用圆心到直线的距离距离等于半径,即可求出切线方程.
解答:解:选取AB所在直线为横轴,
从A到B为正方向,以AB中点O为原点,
过O作AB的垂线为纵轴,则A为(-2,0),
B为(2,0),设P为(x,y)
PA
PB
=
1
2
,∴
(x+2)2+y2
(x-2)2+y2
=
1
2

∴4(x+2)2+4y2=(x-2)2+y2
∴3x2+20x+3y2+20=0.
因为x2,y2两项的系数相等,且缺xy项,
所以轨迹的图形是圆.
(2)设切线l的方程为:y=x+b,
3x2+20x+3y2+20=0化为(x-
10
3
2+y2=
40
9
的圆心(
10
3
,0
),半径为
2
10
3

所以
|
10
3
+b|
12+(-1)2
=
2
10
3

解得b=-
10±4
5
3

所求直线方程为:y=x-
10±4
5
3
点评:求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两定点E(-
2
,0),F(
2
,0),动点P满足
PE
PF
=0,由点P向x轴作垂线PQ,垂足为Q,点M满足
PQ
=
2
MQ
,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l交曲线C于A、B两点,且坐标原点O到直线l的距离为
2
2
,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,记椭圆C的离心率为e(x),则函数y=e(x)的大致图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:高中数学 来源:2010年山西省高二年级12月月考数学卷 题型:选择题

已知两定点,直线过点且与直线平行,则上满足的点的个数为   

A. 0                 B. 1              C.2            D.无法确定

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两定点为A,B且|AB|=4,动点P到两定点的距离之比为
1
2

(1)适当建立直角坐标系,并求动点P的轨迹方程C
(2)若直线l的斜率k=1且与曲线C相切,求直线l的方程.

查看答案和解析>>

同步练习册答案