(本小题12分)已知三次函数
的导函数
,
,(
,![]()
).
(1)若曲线![]()
在点(
,
)处切线的斜率为12,求
的值;
(2)若
在区间[-1,1]上的最小值,最大值分别为-2和1,且
,求函数
的解析式.
(1)a=3;(2)
=![]()
【解析】第一问中利用导数的几何意义可得
=12
∴
解得a的值
第二问∵
,
∴
…5分
由
利用导数判定单调性得到。
解:(1)由导数的几何意义
=12 ……………1分
∴
……………2分
∴ 3a=9 ∴ a=3 ………………………3分
(2)∵
,
∴
…5分
由
得
,
∵
[-1,1],1<a<2
∴ 当
[-1,0)时,
,
递增;
当
(0,1]时,
,
递减。……………8分
∴
在区间[-1,1]上的最大值为f(0)
∵
,∴ b=1 ……………………10分
∵
,![]()
∴ f(-1)<f(1) ∴
f(-1)是函数
的最小值,
∴ -3/2 a=-2 ∴ a=4/3
∴
=
科目:高中数学 来源: 题型:
(本小题12分)已知
,
,直线
与函数
、
的k*s#5^u图象都相切,且与函数
的k*s#5^u图象的k*s#5^u切点的k*s#5^u横坐标为
.
(Ⅰ)求直线
的k*s#5^u方程及
的k*s#5^u值;
(Ⅱ)若
(其中
是
的k*s#5^u导函数),求函数
的k*s#5^u最大值;
(Ⅲ)当
时,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题
(本小题12分)已知等比数列
中,
。
(1)求数列
的通项公式;
(2)设等差数列
中,
,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源:2011云南省潞西市高二上学期期末考试数学试卷 题型:解答题
(本小题12分)
已知顶点在原点,焦点在
轴上的抛物线与直线
交于P、Q两点,|PQ|=
,求抛物线的方程
查看答案和解析>>
科目:高中数学 来源:2010年浙江省杭州市七校高二上学期期中考试数学文卷 题型:解答题
(本小题12分)
已知圆C:
;
(1)若直线
过
且与圆C相切,求直线
的方程.
(2)是否存在斜率为1直线
,使直线
被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求
出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2012届山东省兖州市高二下学期期末考试数学(文) 题型:解答题
(本小题12分)已知函数![]()
(1) 求这个函数的导数;
(2) 求这个函数的图像在点
处的切线方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com