½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ¡°ÌØÕ÷Êý¡±ÊÇ{
}µÄº¯ÊýΪy=
£¬
ÆäͼÏóÏòÏÂƽÒÆ2¸öµ¥Î»£¬µÃµ½µÄк¯ÊýµÄ½âÎöʽÊÇy=
-2£¬¼´y=
£»
£¨2£©ÓÉÌâÒâ¿ÉÖªy=
ÏòÏÂƽÒÆÁ½¸öµ¥Î»µÃy=
¡àAD¡ÎBC£¬ÇÒAB=2£¬ÓÉÖ±Ïߵķ½³Ì¿ÉÖªAB¡ÎCD£®
¡àËıßÐÎABCDΪƽÐÐËıßÐΣ®
ͬʱ¿ÉµÃCµã×ø±êΪ£¨
£¬0£©£¬D£¨
£¬2£©
Óɹ´¹É¶¨Àí¿ÉµÃBC=2£¬¼´AB=BC=2
¡àËıßÐÎABCDΪÁâÐΣ®
£¨3£©¿ÉµÃ¶þ´Îº¯ÊýΪ£ºy=x
2-2bx+b
2+
£¬»¯Îª¶¥µãʽΪ£ºy=£¨x-b£©
2+
£¬
¡à¶þ´Îº¯ÊýµÄͼÏ󲻻ᾹýµãBºÍµãC£®
Éè¶þ´Îº¯ÊýµÄͼÏóÓëËıßÐÎÓй«¹²²¿·Ö£¬
µ±¶þ´Îº¯ÊýµÄͼÏó¾¹ýµãAʱ£¬½«A£¨0£¬1£©£¬´úÈë¶þ´Îº¯Êý£¬
½âµÃb=-
£¬b=
£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
µ±¶þ´Îº¯ÊýµÄͼÏó¾¹ýµãDʱ£¬½«D£¨
£¬2£©£¬´úÈë¶þ´Îº¯Êý£¬
½âµÃb=
+
£¬b=
£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
ËùÒÔʵÊýbµÄÈ¡Öµ·¶Î§£º
£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉµÃº¯Êý½âÎöʽ£¬ÓÉƽÒƵÄ֪ʶ¿ÉµÃ£»
£¨2£©ÓÉÖ±Ïߵķ½³ÌÒ×Ö¤ËıßÐÎΪƽÐÐËıßÐΣ¬ÓÉ×ø±ê¿ÉµÃAB=BC£¬¼´µÃÁâÐΣ»
£¨3£©·Ö±ðÇóµÃº¯ÊýͼÏó¹ýµãA£¬DʱµÄbÖµ£¬ÊýÐνáºÏ¿ÉµÃ·¶Î§£®
µãÆÀ£º±¾Ì⿼²éж¨Ò壬Éæ¼°¶þ´Îº¯ÊýºÍÖ±ÏßµÄλÖùØϵµÄÅж¨£¬Êô»ù´¡Ì⣮