¶¨Òå{a£¬b£¬c}Ϊº¯Êýy=ax2+bx+cµÄ¡°ÌØÕ÷Êý¡±£®È磺º¯Êýy=x2-2x+3µÄ¡°ÌØÕ÷Êý¡±ÊÇ{1£¬-2£¬3}£¬º¯Êýy=2x+3µÄ¡°ÌØÕ÷Êý¡±ÊÇ{0£¬2£¬3£¬}£¬º¯Êýy=-xµÄ¡°ÌØÕ÷Êý¡±ÊÇ{0£¬-1£¬0}
£¨1£©½«¡°ÌØÕ÷Êý¡±ÊÇ{Êýѧ¹«Ê½}µÄº¯ÊýͼÏóÏòÏÂƽÒÆ2¸öµ¥Î»£¬µÃµ½µÄк¯ÊýµÄ½âÎöʽÊÇ________£» £¨´ð°¸Ð´ÔÚ´ð¾íÉÏ£©
£¨2£©ÔÚ£¨1£©ÖУ¬Æ½ÒÆÇ°ºóµÄÁ½¸öº¯Êý·Ö±ðÓëyÖá½»ÓÚA¡¢BÁ½µã£¬ÓëÖ±Ïßx=Êýѧ¹«Ê½·Ö±ð½»ÓÚD¡¢CÁ½µã£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖл­³öͼÐΣ¬ÅжÏÒÔµãA¡¢B¡¢C¡¢DΪ¶¥µãµÄËıßÐÎÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èô£¨2£©ÖеÄËıßÐÎÓë¡°ÌØÕ÷Êý¡±ÊÇ{Êýѧ¹«Ê½}µÄº¯ÊýͼÏóµÄÓн»µã£¬ÇóÂú×ãÌõ¼þµÄʵÊýbµÄÈ¡Öµ·¶Î§£®

½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ¡°ÌØÕ÷Êý¡±ÊÇ{}µÄº¯ÊýΪy=£¬
ÆäͼÏóÏòÏÂƽÒÆ2¸öµ¥Î»£¬µÃµ½µÄк¯ÊýµÄ½âÎöʽÊÇy=-2£¬¼´y=£»
£¨2£©ÓÉÌâÒâ¿ÉÖªy=ÏòÏÂƽÒÆÁ½¸öµ¥Î»µÃy=

¡àAD¡ÎBC£¬ÇÒAB=2£¬ÓÉÖ±Ïߵķ½³Ì¿ÉÖªAB¡ÎCD£®
¡àËıßÐÎABCDΪƽÐÐËıßÐΣ®
ͬʱ¿ÉµÃCµã×ø±êΪ£¨£¬0£©£¬D£¨£¬2£©
Óɹ´¹É¶¨Àí¿ÉµÃBC=2£¬¼´AB=BC=2
¡àËıßÐÎABCDΪÁâÐΣ®
£¨3£©¿ÉµÃ¶þ´Îº¯ÊýΪ£ºy=x2-2bx+b2+£¬»¯Îª¶¥µãʽΪ£ºy=£¨x-b£©2+£¬
¡à¶þ´Îº¯ÊýµÄͼÏ󲻻ᾭ¹ýµãBºÍµãC£®
Éè¶þ´Îº¯ÊýµÄͼÏóÓëËıßÐÎÓй«¹²²¿·Ö£¬

µ±¶þ´Îº¯ÊýµÄͼÏó¾­¹ýµãAʱ£¬½«A£¨0£¬1£©£¬´úÈë¶þ´Îº¯Êý£¬
½âµÃb=-£¬b=£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
µ±¶þ´Îº¯ÊýµÄͼÏó¾­¹ýµãDʱ£¬½«D£¨£¬2£©£¬´úÈë¶þ´Îº¯Êý£¬
½âµÃb=+£¬b=£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
ËùÒÔʵÊýbµÄÈ¡Öµ·¶Î§£º£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉµÃº¯Êý½âÎöʽ£¬ÓÉƽÒƵÄ֪ʶ¿ÉµÃ£»
£¨2£©ÓÉÖ±Ïߵķ½³ÌÒ×Ö¤ËıßÐÎΪƽÐÐËıßÐΣ¬ÓÉ×ø±ê¿ÉµÃAB=BC£¬¼´µÃÁâÐΣ»
£¨3£©·Ö±ðÇóµÃº¯ÊýͼÏó¹ýµãA£¬DʱµÄbÖµ£¬ÊýÐνáºÏ¿ÉµÃ·¶Î§£®
µãÆÀ£º±¾Ì⿼²éж¨Ò壬Éæ¼°¶þ´Îº¯ÊýºÍÖ±ÏßµÄλÖùØϵµÄÅж¨£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Òåmin{a£¬b£¬c}Ϊa£¬b£¬cÖеÄ×îСֵ£¬Éèf£¨x£©=min{2x+4£¬x2+1£¬5-3x}£¬Ôòf£¨x£©µÄ×î´óÖµÊÇ
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÎÄ£©¶ÔÓÚÈÎÒâµÄƽÃæÏòÁ¿
a
=(x1£¬y1)£¬
b
=(x2£¬y2)
£¬¶¨ÒåÐÂÔËË㨒£º
a
¨’
b
=(x1+x2£¬y1y2)
£®Èô
a
£¬
b
£¬
c
ΪƽÃæÏòÁ¿£¬k¡ÊR£¬ÔòÏÂÁÐÔËËãÐÔÖÊÒ»¶¨³ÉÁ¢µÄËùÓÐÐòºÅÊÇ
¢Ù¢Û
¢Ù¢Û
£®
¢Ù
a
¨’
b
=
b
¨’
a
£»            
¢Ú(k
a
)¨’
b
=
a
¨’(k
b
)
£»
¢Û
a
¨’(
b
¨’
c
)=(
a
¨’
b
)¨’
c
£»   
¢Ü
a
¨’(
b
+
c
)=
a
¨’
b
+
a
¨’
c
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Òå{a£¬b£¬c}Ϊº¯Êýy=ax2+bx+cµÄ¡°ÌØÕ÷Êý¡±£®È磺º¯Êýy=x2-2x+3µÄ¡°ÌØÕ÷Êý¡±ÊÇ{1£¬-2£¬3}£¬º¯Êýy=2x+3µÄ¡°ÌØÕ÷Êý¡±ÊÇ{0£¬2£¬3£¬}£¬º¯Êýy=-xµÄ¡°ÌØÕ÷Êý¡±ÊÇ{0£¬-1£¬0}
£¨1£©½«¡°ÌØÕ÷Êý¡±ÊÇ{0£¬
3
3
£¬1
}µÄº¯ÊýͼÏóÏòÏÂƽÒÆ2¸öµ¥Î»£¬µÃµ½µÄк¯ÊýµÄ½âÎöʽÊÇ
y=
3
3
x-1
y=
3
3
x-1
£» £¨´ð°¸Ð´ÔÚ´ð¾íÉÏ£©
£¨2£©ÔÚ£¨1£©ÖУ¬Æ½ÒÆÇ°ºóµÄÁ½¸öº¯Êý·Ö±ðÓëyÖá½»ÓÚA¡¢BÁ½µã£¬ÓëÖ±Ïßx=
3
·Ö±ð½»ÓÚD¡¢CÁ½µã£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖл­³öͼÐΣ¬ÅжÏÒÔµãA¡¢B¡¢C¡¢DΪ¶¥µãµÄËıßÐÎÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èô£¨2£©ÖеÄËıßÐÎÓë¡°ÌØÕ÷Êý¡±ÊÇ{1£¬-2b£¬b2+
1
2
}µÄº¯ÊýͼÏóµÄÓн»µã£¬ÇóÂú×ãÌõ¼þµÄʵÊýbµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Õ¢±±Çø¶þÄ££©¶ÔÓÚÈÎÒâµÄƽÃæÏòÁ¿
a
=(x1£¬y1)£¬
b
=(x2£¬y2)
£¬¶¨ÒåÐÂÔËË㨒£º
a
¨’
b
=(x1+x2£¬y1y2)
£®Èô
a
£¬
b
£¬
c
ΪƽÃæÏòÁ¿£¬k¡ÊR£¬ÔòÏÂÁÐÔËËãÐÔÖÊÒ»¶¨³ÉÁ¢µÄËùÓÐÐòºÅÊÇ
¢Ù¢Ü
¢Ù¢Ü
£®
¢Ù
a
¨’
b
=
b
¨’
a
£»    ¢Ú(k
a
)¨’
b
=
a
¨’(k
b
)
£»    ¢Ûk(
a
¨’
b
)=(k
a
)¨’(k
b
)

¢Ü
a
¨’(
b
¨’
c
)=(
a
¨’
b
)¨’
c
£»     ¢Ý
a
¨’(
b
+
c
)=
a
¨’
b
+
a
¨’
c
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸