½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ¡°ÌØÕ÷Êý¡±ÊÇ{

}µÄº¯ÊýΪy=

£¬
ÆäͼÏóÏòÏÂÆ½ÒÆ2¸öµ¥Î»£¬µÃµ½µÄк¯ÊýµÄ½âÎöʽÊÇy=

-2£¬¼´y=

£»
£¨2£©ÓÉÌâÒâ¿ÉÖªy=

ÏòÏÂÆ½ÒÆÁ½¸öµ¥Î»µÃy=


¡àAD¡ÎBC£¬ÇÒAB=2£¬ÓÉÖ±Ïߵķ½³Ì¿ÉÖªAB¡ÎCD£®
¡àËıßÐÎABCDΪƽÐÐËıßÐΣ®
ͬʱ¿ÉµÃCµã×ø±êΪ£¨

£¬0£©£¬D£¨

£¬2£©
Óɹ´¹É¶¨Àí¿ÉµÃBC=2£¬¼´AB=BC=2
¡àËıßÐÎABCDΪÁâÐΣ®
£¨3£©¿ÉµÃ¶þ´Îº¯ÊýΪ£ºy=x
2-2bx+b
2+

£¬»¯Îª¶¥µãʽΪ£ºy=£¨x-b£©
2+

£¬
¡à¶þ´Îº¯ÊýµÄͼÏ󲻻ᾹýµãBºÍµãC£®
Éè¶þ´Îº¯ÊýµÄͼÏóÓëËıßÐÎÓй«¹²²¿·Ö£¬

µ±¶þ´Îº¯ÊýµÄͼÏó¾¹ýµãAʱ£¬½«A£¨0£¬1£©£¬´úÈë¶þ´Îº¯Êý£¬
½âµÃb=-

£¬b=

£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
µ±¶þ´Îº¯ÊýµÄͼÏó¾¹ýµãDʱ£¬½«D£¨

£¬2£©£¬´úÈë¶þ´Îº¯Êý£¬
½âµÃb=

+

£¬b=

£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
ËùÒÔʵÊýbµÄȡֵ·¶Î§£º

£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉµÃº¯Êý½âÎöʽ£¬ÓÉÆ½ÒƵÄ֪ʶ¿ÉµÃ£»
£¨2£©ÓÉÖ±Ïߵķ½³ÌÒ×Ö¤ËıßÐÎΪƽÐÐËıßÐΣ¬ÓÉ×ø±ê¿ÉµÃAB=BC£¬¼´µÃÁâÐΣ»
£¨3£©·Ö±ðÇóµÃº¯ÊýͼÏó¹ýµãA£¬DʱµÄbÖµ£¬ÊýÐνáºÏ¿ÉµÃ·¶Î§£®
µãÆÀ£º±¾Ì⿼²éж¨Ò壬ɿ¼°¶þ´Îº¯ÊýºÍÖ±ÏßµÄλÖùØÏµµÄÅж¨£¬Êô»ù´¡Ì⣮