分析 化简f(x),根据基本不等式的性质确定f(x)的取值范围,从而解得.
解答 解:f(x)=1+$\frac{(k-1{)x}^{2}}{{x}^{4}{+x}^{2}+1}$,
当k>1时,$\frac{(k-1{)x}^{2}}{{x}^{4}{+x}^{2}+1}$=$\frac{k-1}{{x}^{2}+\frac{1}{{x}^{2}}+1}$,
∵x2+$\frac{1}{{x}^{2}}$≥2(当且仅当x=±1时,等号成立);
故1≤f(x)≤1+$\frac{k-1}{3}$,
故只需使2>$\frac{k-1}{3}$+1,
解得,k<4;
综上所述,1<k<4,
故答案为:(1,4).
点评 本题考查了函数的化简以及转化思想,同时考查了基本不等式的应用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>-3} | B. | {x|x≥-3} | C. | {x|x<-3} | D. | {x|x≤-3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $m≤\frac{7}{3}$ | B. | m≥-1 | C. | $m≤-1或m≥\frac{7}{3}$ | D. | $-1≤m≤\frac{7}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com