分析 (1)f(1)=1-1=0;
(2)求导f′(x)=$\frac{1}{{x}^{2}}$>0,从而判断单调性;
(3)分类讨论,令1-$\frac{1}{x}$=0,令2x-4=0;从而解得.
解答 解:(1)f(1)=1-1=0;
(2)证明:∵x∈(0,+∞)时,
f(x)=1-$\frac{1}{x}$,f′(x)=$\frac{1}{{x}^{2}}$>0;
∴f(x)=1-$\frac{1}{x}$在(0,+∞)上单调递增;
(3)令1-$\frac{1}{x}$=0得,x=1;
令2x-4=0得,x=2(舍去);
故f(x)的零点为1.
点评 本题考查了分段函数的应用及导数的应用.
科目:高中数学 来源: 题型:选择题
| A. | an=2n-2 | B. | an=n2+n-2 | ||
| C. | an=$\left\{\begin{array}{l}{0,}&{n=1}\\{2n-1,}&{n≥2}\end{array}\right.$ | D. | an=$\left\{\begin{array}{l}{0,}&{n=1}\\{2n,}&{n≥2}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{8}$ | B. | $\frac{3}{16}$ | C. | -$\frac{\sqrt{3}}{8}$ | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com