精英家教网 > 高中数学 > 题目详情

 项数为n的数列a1,a2,a3,…,an的前k项和为 (k=1,2,3,…,n),定义为该项数列的“凯森和”,如果项系数为99项的数列a1,a2,a3,…,a99的“凯森和”为1 000,那么项数为100的数列100,a1,a2,a3,…,a99的“凯森和”为(  )

A.991          B.1 001        C.1 090        D.1 100

 

【答案】

C

【解析】.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、给定项数为m (m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,3,…,m),这样的数列叫”0-1数列”.若存在一个正整数k (2≤k≤m-1),使得数列{an}中某连续k项与该数列中另一个连续k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”.例如数列{an}:0,1,1,0,1,1,0,因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(1)已知数列{bn}:0,0,0,1,1,0,0,1,1,0,则该数列
“5阶可重复数列”(填“是”或“不是”);
(2)要使项数为m的所有”0-1数列”都为“2阶可重复数列”,则m的最小值是
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•盐城一模)如果有穷数列a1,a2,a3,…,an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如,由组合数组成的数列
C
0
m
, 
C
1
m
, …, 
C
m
m
就是“对称数列”.
(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;
(2)设{cn}是项数为2k-1(正整数k>1)的“对称数列”,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记{cn}各项的和为S2k-1.当k为何值时,S2k-1取得最大值?并求出S2k-1的最大值;
(3)对于确定的正整数m>1,写出所有项数不超过2m的“对称数列”,使得1,2,22,…,2m-1依次是该数列中连续的项;当m>1500时,求其中一个“对称数列”前2008项的和S2008

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)对于项数为m的有穷数列{an},记bk=max{a1,a2,…,ak}(k=1,2,…,m),即bk为a1,a2,…,ak中的最大值,并称数列{bn}是{an}的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.
(1)若各项均为正整数的数列{an}的控制数列为2,3,4,5,5,写出所有的{an}.
(2)设{bn}是{an}的控制数列,满足ak+bm-k+1=C(C为常数,k=1,2,…,m),求证:bk=ak(k=1,2,…,m).
(3)设m=100,常数a∈(
1
2
,1)
,若an=an2-(-1)
n(n+1)
2
n
,{bn}是{an}的控制数列,求(b1-a1)+(b2-a2)+…+(b100-a100).

查看答案和解析>>

科目:高中数学 来源: 题型:

项数为n的数列a1,a2,a3,…,an的前k项和为Sk(k=1,2,3,…,n),定义
S1+S2+…+Sn
n
为该项数列的“凯森和”,如果项数为99项的数列a1,a2,a3,…,a99的“凯森和”为1000,那么项数为100的数列100,a1,a2,a3,…,a99的“凯森和”为(  )

查看答案和解析>>

同步练习册答案