精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式(a>b>0)的离心率为数学公式,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+数学公式=0相切.
(1)求椭圆C的方程;
(2)设P(4,0),Q是椭圆C上的点,连接PQ交椭圆C于另一点E,求直线PQ的斜率的取值范围.

解:(1)由题意可得e==即c2=a2
∵以原点为圆心,椭圆的短半轴长为半径的圆的方程为与直线x-y+=0相切.
∴圆心到直线x-y+=0的距离d==1=b
∵a2=b2+c2=1+
∴a=2,b=1
∴椭圆C的方程为
(2)由题意可得,所求的直线的斜率k一定存在,故可设直线方程为y=k(x-4)
联立方程可得(1+4k2)x2-32k2x+64k2-4=0
∴△=322k4-4(1+4k2)(64k2-4)>0

分析:(1)由题意可得e==可得a,c的关系,然后由圆心到直线x-y+=0的距离d==1=b可求b,结合a2=b2+c2进而可求椭圆方程
(2)由题意可设直线方程为y=k(x-4),由方程可得(1+4k2)x2-32k2x+64k2-4=0,则△=322k4-4(1+4k2)(64k2-4)>0,解不等式可求
点评:本题主要考查了利用椭圆的性质求解椭圆的方程,直线与椭圆的相交关系的应用,处理此类问题常用的方法是联立方程,结合方程的思想进行求解
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案