精英家教网 > 高中数学 > 题目详情
如图,椭圆E:的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足(O为坐标原点),当时,求实数t的取值范围.

【答案】分析:(Ⅰ)由抛物线方程,得焦点坐标,从而设出椭圆E的方程,解方程组得C(1,2),D(1,-2),根据抛物线、椭圆都关于x轴对称,建立关于参数b的方程,解得b2=1并推得a2=2.最后写出椭圆的方程.
(Ⅱ)由题意知直AB的斜率存在.AB:y=k(x-2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得k值取值范围,再结合向量的坐标运算利用点P在椭圆上,建立k与t的关系式,利用函数的单调性求出实数t取值范围,从而解决问题
解答:解:(Ⅰ)由抛物线方程,得焦点F2(1,0).
所以椭圆E的方程为:
解方程组得C(1,2),D(1,-2).
由于抛物线、椭圆都关于x轴对称,
,∴
因此,,解得b2=1并推得a2=2.
故椭圆的方程为
(Ⅱ)由题意知直AB的斜率存在.
AB:y=k(x-2),设A(x1,y1),B(x2,y2),P(x,y)
代入椭圆方程,得(1+2k2)x2-8k2x+8k2-2=0,
△=64k4-4(2k2+1)(8k2-2)>0,k2
∴x1x2=,x1+x2=


∴(1+k2)[-4×]<
∴(4k2-1)(14k2+13)>0,
∴k2
<k2
∵满足
∴(x1+x2,y1+y2)=t(x,y),
∴x=,y=
∵点P在椭圆上,

∴16k2=t2(1+2k2
∴t2=,由于<k2
∴-2<t<-<t<2
∴实数t取值范围为:-2<t<-<t<2.
点评:本小题主要考查函数单调性的应用、椭圆的简单性质、直线与圆锥曲线的综合问题、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案