精英家教网 > 高中数学 > 题目详情

设函数数学公式
(1)解不等式f(x)≤1
(2)求证:当a≥1时,函数f(x)在区间[0,+∞)上是单调函数
(3)求使f(x)>0对一切x∈R*恒成立,求a的取值范围.

解:(1)
当a=1时,x∈[0,+∞)
当0<a<1时,
当a>1时,
证明:(2)∵
∴函数f(x)在区间[0,+∞)上是单调减函数
解:(3)f(x)>0即
∈(1,+∞)
所以 0<a≤1
分析:(1)先通过两边平方将无理不等式转换为一元二次不等式,再解含参数的一元二次不等式,通过讨论参数a的范围得不等式f(x)≤1的解集
(2)当a≥1时,通过证明f′(x)在区间[0,+∞)上恒不大于零,即可证明函数f(x)在区间[0,+∞)上是单调减函数
(3)f(x)>0对一切x∈R*恒成立等价于对一切x∈R*恒成立,转化为求函数y=的下确界,让a比此函数的下确界不大即可
点评:本题考察了含参数的一元二次不等式的解法,利用导数证明函数的单调性,以及利用函数解决不等式恒成立问题,解题时要有转化化归的解题思想
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•武昌区模拟)设函数f(x)=2x3-3(a+3)x2+18ax-8a,x∈R.
(Ⅰ)当a=-1时,求函数f(x)的极值;
(Ⅱ)若函数f(x)在区间[1,2]上为减函数,求实数a的取值范围;
(Ⅲ)当方程f(x)=0有三个不等的正实数解时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,设命题p:函数y=logax在x∈(0,+∞)上是减少的;命题q:方程x2+ax+1=0有不等的两个实数解.若“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年全国新课标普通高等学校招生统一考试文科数学 题型:解答题


(本小题满分10分)选修4-5不等选讲
设函数(1)当时,求不等式的解集;(2)如果不等式的解集为,求的值。

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

设函数f(x)=2x3-3(a+3)x2+18ax-8a,x∈R。
(1)当a=-1时,求函数f(x)的极值;
(2)若函数f(x)在区间[1,2]上为减函数,求实数a的取值范围;
(3)当方程f(x)=0有三个不等的正实数解时,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011年湖北省武汉市武昌区高三元月调考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=2x3-3(a+3)x2+18ax-8a,x∈R.
(Ⅰ)当a=-1时,求函数f(x)的极值;
(Ⅱ)若函数f(x)在区间[1,2]上为减函数,求实数a的取值范围;
(Ⅲ)当方程f(x)=0有三个不等的正实数解时,求实数a的取值范围.

查看答案和解析>>

同步练习册答案