精英家教网 > 高中数学 > 题目详情
设函数f(x)=2x3-3(a+3)x2+18ax-8a,x∈R。
(1)当a=-1时,求函数f(x)的极值;
(2)若函数f(x)在区间[1,2]上为减函数,求实数a的取值范围;
(3)当方程f(x)=0有三个不等的正实数解时,求实数a的取值范围。
解:f'(x)=6x2-6(a+3)x+18a=6(x-3)(x-a)
 (1)当a=-1时,f'(x)=6(x-3)(x+1)
令f'(x)>0,得x<-1或x>3
所以f(x)在(-∞,-1)和(3,+∞)上单调递增,
在(-1,3)上单调递减,
当x=-1时,f(x)极大=f(-1)=18
当x=3时,f(x)极小=f(3)=-46。
 (2)依题意:f'(x)=6[x2-(a+3)x+3a]≤0在x∈[1,2] 恒成立
因x∈[1,2],3-x>0,
在x∈[1,2]恒成立,
所以a≤xmin=1。
(3)显然,x=3或x=a是极值点,
依题意,当方程f(x)=0有三个不等的正实数解时,有:


或a>8为所求。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、设函数f(x)=2x+3,g(x)=3x-5,则f(g(1))=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

给定实数a(a≠
12
),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2
(Ⅰ)求函数y=f′(x)的单调区间;
(Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(2x+1)(3x+a)
x
为奇函数,则a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+x-4,则方程f(x)=0一定存在根的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

同步练习册答案