【题目】【选修4-4:坐标系与参数方程】
在直角坐标系中圆C的参数方程为(为参数),以原点O为极点, 轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线与曲线交于两点,求的面积.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)证明f(x)为偶函数;
(2)若不等式k≤xf(x)+ 在x∈[1,3]上恒成立,求实数k的取值范围;
(3)当x∈[ , ](m>0,n>0)时,函数g(x)=tf(x)+1,(t≥0)的值域为[2﹣3m,2﹣3n],求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )
A.2017×22015
B.2017×22014
C.2016×22015
D.2016×22014
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求 的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1)”生成一个函数h(x),使得h(x)满足:
①是偶函数,②有最小值1,求h(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人准备报考某大学,假设甲考上的概率为 ,甲,丙两都考不上的概率为 ,乙,丙两都考上的概率为 ,且三人能否考上相互独立.
(1)求乙、丙两人各自考上的概率;
(2)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(1)若PD=1,求异面直线PB和DE所成角的余弦值.
(2)若二面角P﹣BF﹣C的余弦值为 ,求四棱锥P﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x3+ax在(﹣1,0)上是增函数.
(1)求实数a的取值范围A;
(2)当a为A中最小值时,定义数列{an}满足:a1∈(﹣1,0),且2an+1=f(an),用数学归纳法证明an∈(﹣1,0),并判断an+1与an的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com