精英家教网 > 高中数学 > 题目详情
设二次函数f(x)=ax2+bx+c(a>b>c)且f(1)=0且存在实数m使f(m)=-a,试推理f(x)在[0,+∞)上是否为单调.
考点:二次函数的性质
专题:函数的性质及应用
分析:由f(m)=-a即知方程ax2+bx+c+a=0有实数根,所以△=b2-4a(a+c)≥0,而由f(1)=0容易得到a>0,c<0,a+b>0,以及a+c=-b,所以△=b(4a+b)≥0,所以可判断出b≥0,所以f(x)的对称轴x=-
b
2a
≤0
,所以便得到f(x)在[0,+∞)上单调递增.
解答: 解:∵存在实数m使f(m)=-a;
∴方程ax2+bx+c+a=0有实根;
∴△=b2-4a(a+c)≥0 ①;
∵f(1)=0;
∴a+b+c=0,又a>b>c;
∴a>0,c<0;
∴将a+c=-b带入①得:
b2+4ab=b(4a+b)≥0;
∵a+b=-c>0,a>0;
∴4a+b>0;
∴b≥0;
-
b
2a
≤0
,x=-
b
2a
是f(x)的对称轴;
∴函数f(x)在[0,+∞)上是增函数.
点评:考查一元二次方程有实根时判别式△的取值情况,二次函数的对称轴,及二次函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

边长为2的正三角形的顶点和各边的中点共6个点,从中任选两点,所选出的两点之间距离大于1的概率是(  )
A、
1
3
B、
1
2
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1<x<8},B={x|x-6<0},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l与抛物线y2=4x交于A、B两点,与准线交于C点,与x轴交于D(3,0)点,B在线段AC上,若|BC|:|AD|=1:3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y-4)2=1,圆C2:(x+1)2+y2=1;
(1)求过点A(4,6)的圆C1的切线l的方程;
(2)已知圆C3:(x+1)2+y2=9,动圆M半径为1,圆心M在圆心C3上移动,过圆M上任作圆C2的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的长轴和短轴把椭圆分成4块,现有5种不同的颜料给4块涂色,要求共边两块颜色互异,每块只涂一色,一共有多少种不同的涂法.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,F1,F2分别为左、右焦点,离心率为e,半长轴长为a.
(1)若焦距长2c=2,且1、e、
1
4
成等比数列,求椭圆C的方程;
(2)在(1)的条件下,直线l:ex-y+a=0与x轴、y轴分别相交于M、N 两点,p是直线l与椭圆C的一个交点,且
MP
MN
,求λ的值;
(3)若不考虑(1),在(2)中,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
-1

(Ⅰ)求函数f(x)在区间[1,e2]上的最值;
(Ⅱ)证明:对任意n∈N+,不等式ln(
n+1
n
e
n+1
n
都成立(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

10名学生站成一排,要给每名学生发一顶红色、黄色、蓝色的帽子,要求每种颜色的帽子都要有,且相邻的两名学生帽子的颜色不同,则满足要求的发帽子的方法种数为
 

查看答案和解析>>

同步练习册答案