精英家教网 > 高中数学 > 题目详情

圆:x2+y2-2x-2y+1=0上的点到直线x-y=2的距离最小值是


  1. A.
    2
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:把圆的方程化为标准方程,找出圆心坐标和圆的半径r,再利用点到直线的距离公式求出圆心到已知直线的距离d,用d-r即可求出所求的距离最小值.
解答:把圆的方程化为标准方程得:(x-1)2+(y-1)2=1,
∴圆心坐标为(1,1),半径r=1,
∴圆心到直线x-y=2的距离d==
则圆上的点到已知直线距离最小值为d-r=-1.
故选C
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,其中根据题意得出圆心到已知直线的距离减去圆的半径为所求距离的最小值是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果直线l将圆:x2+y2-2x-4y=0平分,且不通过第四象限,那么l的斜率的取值范围是(  )
A、[0,2]
B、[0,1]
C、[0,
1
2
]
D、[0,  
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

求过圆:x2+y2-2x+2y+1=0与圆:x2+y2+4x-2y-4=0的交点,圆心在直线:x-2y-5=0的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l1:2x-y+a=0,l2:2x-y+a2+1=0和圆:x2+y2+2x-4=0相切,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知从点(-2,1)发出的一束光线,经x轴反射后,反射光线恰好平分圆:x2+y2-2x-2y+1=0的圆周,则反射光线所在的直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆方程x2+y2-2x-4y+m=0.
(1)若圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点)求m的值;
(2)在(1)的条件下,求以MN为直径的圆的方程.

查看答案和解析>>

同步练习册答案