精英家教网 > 高中数学 > 题目详情

若函数f(x)=sinωx+acosωx(ω>0)的图象关于点数学公式对称,且满足f(数学公式)=f(数学公式),则a+ω的一个可能的取值是


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
D
分析:由题意可得,f(0)=f(),可得关于a与ω的关系式;又f()=f(),可知f(x)=sinωx+acosωx(ω>0)的图象关于直线x=对称,得关于a与ω的又一关系式;通过赋值可得答案.
解答:∵函数f(x)=sinωx+acosωx(ω>0)的图象关于点M(,0)对称,
∴f(0)=f(),即a=sin+acos
又f()=f(),
∴f(x)=sinωx+acosωx(ω>0)的图象关于直线x=对称,
∴f(0)=f(),即a=sin+acos
∴sin+acos=sin+acos
不妨令ω=3,则0+a=0-a,
∴a=0,
∴a+ω=0+3.
即3是a+ω的一个可能值.
故选D.
点评:本题考查三角函数的性质,求得a是关键,考查正弦函数的对称性,考查分析、转化与运用三角知识解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
6
)+sin(x-
π
6
)+2cos2
x
2
+a
(a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若f(x)在[-
π
2
π
2
]
上的最大值与最小值之和为
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx-sinωx,sinωx)
b
=(-cosωx-sinωx,2
3
cosωx)
,其中ω>0,且函数f(x)=
a
b
(λ为常数)的最小正周期为π.
(Ⅰ)求函数y=f(x)的图象的对称轴;
(Ⅱ)若函数y=f(x)的图象经过点(
π
4
,0)
,求函数y=f(x)在区间[0,
12
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知sin(
π
2
+B)=
2
5
5

(1)求tan2B的值;
(2)若cosA=
3
10
10
,c=10,求△ABC的面积;
(3)若函数f(x)=
4cos4x-2cos2x-1
cos2x
,求f(C)+sin2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(t)=at2-
b
t+
1
4a
(t∈R,a<0)的最大值为正实数,集合A={x|
x-a
x
<0},集合B={x|x2<b2}.
(1)求A和B;
(2)定义A与B的差集:A-B={x|x∈A且x∉B}.设a,b,x均为整数,且x∈A.P(E)为x取自A-B的概率,P(F)为x取自A∩B的概率,写出a与b的二组值,使P(E)=
2
3
,P(F)=
1
3

(3)若函数f(t)中,a,b是(2)中a较大的一组,试写出f(t)在区间[n-
2
8
,n]上的最大值函数g(n)的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(t)=at2-
b
t+
1
4a
(t∈R,a<0)的最大值为正实数,集合A={x|
x-a
x
<0},集合B={x|x2<b2}.
(1)求A和B;
(2)定义A与B的差集:A-B={x|x∈A且x∉B}.设a,b,x均为整数,且x∈A.P(E)为x取自A-B的概率,P(F)为x取自A∩B的概率,写出a与b的二组值,使P(E)=
2
3
,P(F)=
1
3

(3)若函数f(t)中,a,b是(2)中a较大的一组,试写出f(t)在区间[n-
2
8
,n]上的最大值函数g(n)的表达式.

查看答案和解析>>

同步练习册答案