精英家教网 > 高中数学 > 题目详情

【题目】如图所示的多面体中,四边形为菱形,且的中点.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

【答案】(1)证明见解析;(2).

【解析】

(1)连结BD,交AC于M,连结FM,MG,证明即可解决问题。

(2)建立空间直角坐标系,求得平面的一个法向量,利用空间向量夹角公式即可求得直线EC与平面ACF所成角的正弦值,问题得解

证明:(1)连结BD,交AC于M,连结FM,MG,

因为BC=AD=2EF,EF∥BC,BC∥AD,所以

在△ACD中,M,G分别为AC,CD的中点,所以

所以,所以四边形EFMG是平行四边形,

所以EG∥FM,

又因为FM平面ACF,EC平面ACF,所以EG∥平面ACF.

(2)取AB的中点O,连结FO,OC,

因为AF=BF=BC,∠ABC=60°,四边形ABCD为菱形,所以FO⊥AB,OC⊥AB,

因为平面ABF⊥平面ABCD,所以FO⊥平面ABCD,

故以O为原点,分别为x轴,y轴,z轴正方向建立空间直角坐标系,设AF=BF=BC=2EF=2.

则A(-1,0,0),C(0,,0),F(0,0,),E(),=(1,,0),

是平面ACF的一个法向量,

令y=z=1,则,故=(,1,1),

设直线EC与平面ACF所成角为

所以直线EC与平面ACF所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为 为坐标原点.

I)求椭圆的方程.

II)若点为椭圆上一动点,点与点的垂直平分线l交轴于点的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的极值;

(2),对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数),当时,只有一个实根;当时,只有3个相异实根,现给出下列4个命题:

有一个相同的实根;

有一个相同的实根;

的任一实根大于的任一实根;

的任一实根小于的任一实根.

其中真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对40名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为常喝,体重超过肥胖”.已知在全部40人中随机抽取1人,抽到肥胖学生的概率为.

常喝

不常喝

合计

肥胖

3

不肥胖

5

合计

40

1)请将上面的列联表补充完整;

2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由.

参考公式:

①卡方统计量,其中为样本容量;

②独立性检验中的临界值参考表:

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象上存在关于轴对称的点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线Ca0),过点P(-2,-4)的直线l的参数方程为t为参数),lC分别交于MN.

1)写出C的平面直角坐标系方程和l的普通方程;

2)若|PM||MN||PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的方程为,过点且斜率为的直线与曲线相切于点

(1)以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,求曲线的极坐标方程和点的极坐标;

(2)若点在曲线上,求面积的最大值.

查看答案和解析>>

同步练习册答案