精英家教网 > 高中数学 > 题目详情
如图,在极坐标下,写出点P的极坐标
 

精英家教网
分析:如图所示,连接OP.由OA是圆的直径,可得∠P=90°,利用直角三角形的边角关系可得ρ=|OP|=2sin60°,即可得出.
解答:解:如图所示,连接OP.精英家教网
由OA是圆的直径,则∠P=90°,
∴ρ=|OP|=2sin60°=
3

∴点P的极坐标为(
3
π
6
)

故答案为:(
3
π
6
)
点评:本题考查了直角三角形的边角关系、极坐标的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宿迁一模)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
21
1a
的一个特征值是3,求直线x-2y-3=0在M作用下的新直线方程.
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosα
y=sinα+1
(α是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(Ⅰ)如图,正方形OABC在二阶矩阵M对应的切变变换作用下变为平行四边形OA′B′C′,平行四边形OA'B'C'在二阶矩阵N对应的旋转变换作用下变为平行四边形OA''B''C'',求将正方形OABC变为平行四边形OA''B''C''的变换对应的矩阵.
(Ⅱ)在直角坐标系xOy中,圆O的参数方程为
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ为参数,r>0).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l的极坐标方程为ρsin(θ+
π
4
)=
2
2
.写出圆心的极标,并求当r为何值时,圆O上的点到直线l的最大距离为3.
(Ⅲ)已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏二模)选答题:本大题共四小题,请从这4题中选作2小题,如果多做,则按所做的前两题记分.每小题10分,共20分,解答时应写出文字说明,证明过程或演算步骤.
A、选修4-1:
几何证明选讲.如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求∠DAC的度数与线段AE的长.
B、选修4-2:矩阵变换
求圆C:x2+y2=4在矩阵A=[
20
01
]的变换作用下的曲线方程.
C、选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2sinθ,它们相交于A、B两点,求线段AB的长.
D、选修4-5:不等式选讲
已知a、b、c为正数,且满足acos2θ+bsin2θ<c.求证:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在极坐标下,写出点P的极坐标
 

精英家教网

查看答案和解析>>

同步练习册答案