【题目】自湖北武汉爆发新型冠状病毒肺炎疫情以来,各地医疗物资缺乏,各生产企业纷纷加班加点生产,某企业准备购买三台口罩生产设备,型号分别为A,B,C,已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元;也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应同时购买的易耗品的件数,该单位调查了这三种型号的设备各60台,调查每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.
每台设备一个月中使用的易耗品的件数 | 6 | 7 | 8 | |
频数 | 型号A | 30 | 30 | 0 |
型号B | 20 | 30 | 10 | |
型号C | 0 | 45 | 15 | |
将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.
(1)求该单位一个月中A,B,C三台设备使用的易耗品总数超过21件(不包括21件)的概率;
(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?
【答案】(1)
;(2)该单位在购买设备时应同时购买21件易耗品
【解析】
(1)由题中表格数据,分别求出三个型号设备在一个月使用易耗品的件数所对应的频率,设该单位三台设备在一个月中使用的易耗品的总件数为X,可知
,分别求出
和
,即可求出答案;
(2)分别求出两种情况下,一个月购买易耗品所需总费用的所有可能值,并求出对应的概率,从而可求出两种情况的期望,比较二者大小,可得出结论.
(1)由题中表格可知,
A型号的设备一个月中使用易耗品的件数为6和7的频率均为
;
B型号的设备一个月中使用易耗品的件数为6,7,8的频率分别为
,
,
;
C型号的设备一个月中使用易耗品的件数为7和8的频率分别为
,
,
设该单位一个月中A,B,C三台设备使用易耗品的件数分别为x,y,z,则
,
,
,
,
,
.
设该单位三台设备一个月中使用的易耗品的总件数为X,
则
.
而![]()
,
,
故
,
即该单位一个月中A,B,C三台设备使用的易耗品总数超过21件的概率为
.
(2)该单位三台设备一个月中使用的易耗品的总件数为X,可能的取值为19,20,21,22,23.
,
![]()
,
![]()
,
由(1)知,
,
.
若该单位在购买设备的同时购买了20件易耗品,设该单位一个月中购买易耗品所需的总费用为
元,
则
的所有可能取值为2000,2200,2400,2600.
,
,
,
,
所以
.
若该单位在购买设备的同时购买了21件易耗品,设该单位一个月中购买易耗品所需的总费用为Z元,
则Z的所有可能取值为2100,2300,2500.
,
,
,
所以
.
因为
,即
,所以该单位在购买设备时应同时购买21件易耗品.
科目:高中数学 来源: 题型:
【题目】给出下列说法:①设
,
,则“
”是“
”的充分不必要条件;②若
,则
,使得
;③
为等比数列,则“
”是“
”的充分不必要条件;④命题“
,
,使得
”的否定形式是“
,
,使得
” .其中正确说法的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
是等边三角形,底面
是直角梯形,
,
,
,
,
,
分别是
,
的中点.
![]()
(1)①求证:
平面
;
②求线段
的长度;
(2)若
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自湖北武汉爆发新型冠状病毒肺炎疫情以来,各地医疗物资缺乏,各生产企业纷纷加班加点生产,某企业准备购买三台口罩生产设备,型号分别为A,B,C,已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元;也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应同时购买的易耗品的件数,该单位调查了这三种型号的设备各60台,调查每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.
每台设备一个月中使用的易耗品的件数 | 6 | 7 | 8 | |
频数 | 型号A | 30 | 30 | 0 |
型号B | 20 | 30 | 10 | |
型号C | 0 | 45 | 15 | |
将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.
(1)求该单位一个月中A,B,C三台设备使用的易耗品总数超过21件(不包括21件)的概率;
(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f1(x)=
x2,f2(x)=alnx(其中a>0).
(1)求函数f(x)=f1(x)·f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(
,e)内有两个零点,求正实数a的取值范围;
(3)求证:当x>0时,
.(说明:e是自然对数的底数,e=2.71828…)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与上、下顶点构成直角三角形,以椭圆
的长轴长为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点且不平行于
轴的动直线与椭圆
相交于
两点,探究在
轴上是否存在定点
,使得
为定值?若存在,试求出定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com