精英家教网 > 高中数学 > 题目详情
如图, 在空间四边形SABC中, 平面ABC, , 于N, 于M.

求证:①AN^BC;  ②平面SAC^平面ANM
证明略     ②略
(1)证明即可.
(2)先证明得到,再证明即可
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 四棱锥的底面与四个侧面的形状和大小如图所示。

(Ⅰ)写出四棱锥中四对线面垂直关系(不要求证明)
(Ⅱ)在四棱锥中,若的中点,求证:平面
(Ⅲ)求四棱锥值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体中,面中心为

(1)求证:
(2)求异面直线所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若A(-4,2),B(6,-4),C(12,6),D(2,12),下面四个结论中正确的是           
①AB∥CD ②AB⊥AD ③|AC|=|BD| ④AC⊥BD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中,正确的是
A.棱柱的侧面可以是三角形
B.由六个大小一样的正方形所组成的图形是正方体的展开图
C.正方体的各条棱都相等
D.棱柱的各条棱都相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连结球面上两点的线段称为球的弦.半径为4的球的两条弦的长度分别等于分别为的中点,每条弦的两端都在球面上运动,有下列四个结论:
①弦可能相交于点;②弦可能相交于点
的最大值为5;     ④的最小值为1.
其中正确结论的个数为(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于任意的直线与平面,在平面内必有直线,使(     )
A.平行B.相交C.垂直D.互为异面直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥中,侧棱两两垂直,
面积分别为.则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、已知一个球的表面积为,则这个球的体积为           

查看答案和解析>>

同步练习册答案