精英家教网 > 高中数学 > 题目详情
10.关于x的不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$(其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,试确定k的取值范围;
(2)若k>1时,上述不等式的解集是x∈(3,+∞),求k的值.

分析 (1)若x=3在上述不等式的解集中,即x=3,求解关于k的不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$即可.
(2)根据不等式与方程的思想求解,移项通分,化简,利用x=3求解k的值.

解答 解:(1)由题意:x=3时,不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$化简为$\frac{5}{k}>1$,即$\frac{5}{k}-1>0$,可得(5-k)k>0,
解得:0<k<5.
∴当x=3在上述不等式的解集中,k的取值范围是(0,5)
(2)不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$化简可得$\frac{x+2}{k}>\frac{{k}^{2}+x-3}{{k}^{2}}$(其中k∈R,k≠0).
∵k>1,
可得:$x+2>\frac{{k}^{2}+x-3}{k}$?kx+2k>k2+x-3
不等式的解集是x∈(3,+∞),∴x=3是方程kx+2k=k2+x-3的解.
即3k+2k=k2
∵k≠0,
∴k=5.
故得若k>1时,不等式的解集是x∈(3,+∞)时k的值为5.

点评 本题考查了分式不等式的化简和解法,不等式与方程的关系.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为(  )
A.直线BE与直线CF共面B.直线BE与直线AF是异面直线
C.平面BCE⊥平面PADD.面PAD与面PBC的交线与BC平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题正确的是(  )
A.“a2>9”是“a>3”的充分不必要条件
B.函数f(x)=x2-x-6的零点是(3,0)或(-2,0)
C.对于命题p:?x∈R,使得x2-x-6>0,则¬p:?x∈R,均有x2-x-6≤0
D.命题“若x2-x-6=0,则x=3”的否命题为“若x2-x-6=0,则x≠3”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.分别求出下列曲线的方程:
(1)椭圆的两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10,求椭圆的标准方程.
(2)双曲线C经过点(2,2),且与$\frac{{y}^{2}}{4}$-x2=1具有相同的渐近线,求双曲线C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两个单位向量$\overrightarrow i$,$\overrightarrow j$互相垂直,且向量$\overrightarrow k=2\overrightarrow i-4\overrightarrow j$,则$|\overrightarrow k+\overrightarrow i|$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)在△ABC中,a=3,c=2,B=60°求b
(2)在△ABC中,A=60°,B=45°,a=2 求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(2,1)的直线l与x轴、y轴分别交于P、Q两点,O为原点,且S△OPQ=4,则符合条件的直线l有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a1=3,an=2an-1+(t+1)•2n+3m+t(t,m∈R,n≥2,n∈N*
(1)t=0,m=0时,求证:$\{\frac{a_n}{2^n}\}$是等差数列;
(2)t=-1,m=$\frac{4}{3}时,求证:\{{a_n}+3\}$是等比数列;
(3)t=0,m=1时,求数列{an}的通项公式和前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$E:\frac{x^2}{4}+\frac{y^2}{2}=1$,直线l交椭圆于A,B两点,若线段AB的中点坐标为$({\frac{1}{2},-1})$,则直线l的一般方程为2x-8y-9=0.

查看答案和解析>>

同步练习册答案