精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线,在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系(取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)写出求直线l的参数方程,并将曲线C的方程化为直角坐标方程;
(Ⅱ)若曲线C与直线l相交于不同的两点M、N,求|PM|+|PN|的取值范围.
考点:参数方程化成普通方程
专题:坐标系和参数方程
分析:对第(Ⅰ)问,根据“
x=x0+tcosα
y=y0+tsinα
”直接写出l的参数方程,利用极坐标与直角坐标的转换关系式
ρ2=x2+y2
x=ρcosθ
,可将曲线C的方程化为直角坐标方程;
对第(Ⅱ)问,联立l的参数方程与曲线C的普通方程,消去x与y,得到关于t的一元二次方程,写出|PM|+|PN|关于t及α的表达式,利用韦达定理及α的范围,可探求|PM|+|PN|的取值范围.
解答:解:(Ⅰ)∵直线l过定点P(4,2),且倾斜角为α,
∴l的参数方程为
x=4+tcosα
y=2+tsinα
(t为参数).
由ρ=4cosθ,得ρ2=4ρcosθ,
ρ2=x2+y2
x=ρcosθ
代入上式中,整理得曲线C的普通方程为x2+y2-4x=0.
(Ⅱ)将l的参数方程
x=4+tcosα
y=2+tsinα
代入x2+y2=4x中,
得t2+4(sinα+cosα)t+4=0,
由题意有△=16(sinα+cosα)2-16>0,
得sinα•cosα>0,∵0≤α<π,∴sinα>0,且cosα>0,从而0<α<
π
2

设点M,N对应的参数分别为t1,t2
由韦达定理,得t1+t2=-4(sinα+cosα)<0,t1•t2=4>0,
∴t1<0,且t2<0,
∴|PM|+|PN|=|t1|+|t2|=-t1-t2=4(sinα+cosα)=4
2
sin(α+
π
4
)

由0<α<
π
2
,得
π
4
<α<
4

2
2
<sin(α+
π
4
)
≤1,
故|PM|+|PN|的取值范围是(4 ,4
2
]
点评:1.极坐标方程化直角坐标方程,一般通过两边同时平方,两边同时乘以ρ等方式,构造或凑配ρ2,ρcosθ,ρsinθ,再利用互化公式转化.常见互化公式有ρ2═x2+y2,ρcosθ=x,ρsinθ=y,tanθ=
y
x
等.
2.运用参数方程解题时,应熟练参数方程中各量的含义,即过定点M0(x0,y0)M0,且倾斜角为α的直线的参数方程为“
x=x0+tcosα
y=y0+tsinα
”,参数t表示以M0为起点,直线上任意一点M为终点的向量
M0M
的数量,即当
M0M
沿直线向上时,t=|
M0M
|;当
M0M
沿直线向下时,t=-|
M0M
|.
3.对于曲线C与直线l的相交问题,一般是联立曲线与直线的方程,消去相应的变量,再利用韦达定理求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系下,直线C1
x=2t+2a
y=-t
(t为参数),曲线C2
x=2cosθ
y=2+sinθ
,(θ为参数),若C1与C2有公共点,则实数a的取值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系.已知点P(-1,0),若极坐标方程为ρ=6cosθ-6sinθ+
9
ρ
的曲线与直线
x=-1+4t
y=-3t
(t为参数)相交于A、B两点,则|PA|•|PB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极值为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
x=m+t
y=t
,(t是参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|AB|=
14
,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(
π
3
-θ)=
3
2
,曲线C的参数方程为
x=1+cosα
y=sinα
(α为参数,0≤α≤π)
(Ⅰ)写出直线l的直角坐标方程;
(Ⅱ)求直线l与曲线C的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,
BP
=2
PA
,点P的轨迹为曲线C.
(Ⅰ)以直线AB的倾斜角α为参数,求曲线C的参数方程;
(Ⅱ)求点P到点D(0,-2)距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则下列函数中,与图象对应的函数可能为(  )
A、y=|ln(x-1)|
B、y=|ln|x-1||
C、y=
ln|x-1|(x>0)
-|ln|x+1||(x≤0)
D、y=
ln|x+1|(x>0)
-|ln|x-1||(x≤0)

查看答案和解析>>

科目:高中数学 来源:人教A版(新课标) 选修4-7 优选法与试验设计初步 题型:

的值是

[  ]

A.

-2

B.

2

C.

3

D.

-3

查看答案和解析>>

同步练习册答案