精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,设点(其中表示ab中的较大数)为两点的切比雪夫距离”.

1)若Q为直线上动点,求PQ两点切比雪夫距离的最小值;

2)定点,动点满足,请求出P点所在的曲线所围成图形的面积.

【答案】1;(2

【解析】

1)设,可得,讨论的大小,可得距离,再结合函数的性质求最小值即可;

2)运用分段函数的形式求得,分析各段与不等式表示的平面区域的图形,即可求得面积.

解:(1)设,可得

,解得,即有,则当时,取最小值

,解得,即有,即

综上可得:PQ两点切比雪夫距离的最小值为

2)由题意可得

,即有

则围成的图形为关于点对称的三角形区域,

,即有

则围成的图形为关于点对称的三角形区域,

综上可得,P点所在的曲线所围成图形为边长为的正方形区域,则该区域面积为

P点所在的曲线所围成图形的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数()是奇函数.

(1)求实数的值;

(2)用函数单调性的定义证明函数上是增函数;

(3)对任意的,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列几个命题:①p,则q的否命题是,则;②pq的必要条件,rq的充分不必要条件,则pr的必要不充分条件;③若为真命题,则命题pq中至多有一个为真命题;④过点的直线和圆相切的充要条件是直线斜率为.其中为真命题的有(

A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若函数上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆上任意一点,的最小值为,且该椭圆的离心率为.

1)求椭圆的方程;

2)若是椭圆上不同的两点,且,若,试问直线是否经过一个定点?若经过定点,求出该定点的坐标;若不经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下面四个命题:

①“若,则”的逆否命题为“若,则

②“”是“”的充分不必要条件

③命题存在,使得,则:任意,都有

④若为假命题,则均为假命题,其中真命题个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由

参照附表,得到的正确结论是

  

A. 99.5%以上的把握认为“爱好该项运动与性别有关”

B. 99.5%以上的把握认为“爱好该项运动与性别无关”

C. 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分別为a,b,c,asinAcosC+csinAcosA=c.

(1)c=1,sinC=,ABC的面积S;

(2)DAC的中点,cosB=,BD=,ABC的三边长.

查看答案和解析>>

同步练习册答案