精英家教网 > 高中数学 > 题目详情

已知a>b>c>0,方程x2-(a+b+c)x+ab+bc+ca=0,若该方程有实根,求证:a,b,c不能成为一个三角形的三边长.

答案:
解析:

  证明:∵方程x2-(a+b+c)x+ab+bc+ca=0有实根,

  ∴Δ=(a+b+c)2-4(ab+bc+ca)=a2+b2+c2-2(ab+bc+ca)

  =(a-b)2-2(a+b)c+c2

  =[()2-c]·[()2-c]

  =()()()()≥0.

  若a,b,c为一个三角形的三边长,由>0,>0,>0,

  得≥0,即

  即b+c<a.这与三角形两边之和大于第三边矛盾.

  ∴a,b,c不能成为一个三角形的三边长.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c∈(0,+∞),3a-2b+c=0,则
ac
b
的(  )
A、最大值是
3
B、最小值是
3
C、最大值是
3
3
D、最小值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c>0,若P=
b-c
a
,Q=
a-c
b
,则(  )
A、P≥QB、P≤Q
C、P>QD、P<Q

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)已知a,b,c∈(0,+∞),且
1
a
+
2
b
+
3
c
=2
,求a+2b+3c的最小值及取得最小值时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区一模)(1)A、B、C为斜三角形ABC的三个内角,tgA+tgB+1=tgAtgB.求角C;
(2)命题:已知A,B,C∈(0,π),若tgA+tgB+tgC=tgAtgBtgC,则A+B+C=π.判断该命题的真假并说明理由.
(说明:试卷中的“tgA”在试点教材中记为“tanA”)

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-5:不等式选讲)已知a>b>c>0,求证:a+
3
3(a-b)(b-c)c
≥6
(并指出等号成立的条件)

查看答案和解析>>

同步练习册答案