分析 (Ⅰ)由题意可得:$\left\{\begin{array}{l}\frac{1^2}{a^2}+\frac{1}{{2{b^2}}}=1\\{a^2}-{b^2}=1\end{array}\right.$,解出即可得出.
(Ⅱ)当直线EM斜率存在时,设直线方程为l:y=kx+m,E(x1,y1),M(x2,y2),与椭圆方程联立得(1+2k2)x2+4kmx+2m2-2=0,利用斜率计算公式、根与系数的关系及其${k_{OE}}•{k_{OM}}=\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=-\frac{1}{2}$,可得2m2=2k2+1,原点到直线EM的距离为$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$,利用${S_{△OEM}}=\frac{1}{2}|{EM}|d=\frac{1}{2}\sqrt{1+{k^2}}|{{x_1}-{x_2}}|\frac{|m|}{{\sqrt{1+{k^2}}}}$,代入化简即可得出定值,斜率不存在时也成立.
解答 解:(Ⅰ)∵为点$P({1,\frac{{\sqrt{2}}}{2}})$在椭圆C上,椭圆C的右焦点为F2(1,0),
则$\left\{\begin{array}{l}\frac{1^2}{a^2}+\frac{1}{{2{b^2}}}=1\\{a^2}-{b^2}=1\end{array}\right.$,解得$\left\{\begin{array}{l}{a^2}=2\\{b^2}=1\end{array}\right.$,
∴椭圆C的方程为$\frac{x^2}{2}+{y^2}=1$.
(Ⅱ)当直线EM斜率存在时,设直线方程为l:y=kx+m,E(x1,y1),M(x2,y2),
联立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$得(1+2k2)x2+4kmx+2m2-2=0,$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}\\{x_1}{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}\end{array}\right.$,
${y_1}{y_2}=(k{x_1}+m)(k{x_2}+m)={k^2}{x_1}{x_2}+km({x_1}+{x_2})+{m^2}$=$\frac{{{m^2}-2{k^2}}}{{1+2{k^2}}}$,
由${k_{OE}}•{k_{OM}}=\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=-\frac{1}{2}$得$\frac{{\frac{{{m^2}-2{k^2}}}{{1+2{k^2}}}}}{{\frac{{2{m^2}-2}}{{1+2{k^2}}}}}=-\frac{1}{2}$,即2m2=2k2+1,
原点到直线EM的距离为$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$,
∴${S_{△OEM}}=\frac{1}{2}|{EM}|d=\frac{1}{2}\sqrt{1+{k^2}}|{{x_1}-{x_2}}|\frac{|m|}{{\sqrt{1+{k^2}}}}$
=$\frac{|m|}{2}|{{x_1}-{x_2}}|=\frac{|m|}{2}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}$=$\frac{|m|}{2}\sqrt{{{(-\frac{4km}{{1+2{k^2}}})}^2}-4×\frac{{2{m^2}-2}}{{1+2{k^2}}}}$
=$\frac{|m|}{2}\sqrt{\frac{{16{k^2}{m^2}-4(2{m^2}-2)(1+2{k^2})}}{{{{(1+2{k^2})}^2}}}}$
=$\frac{|m|}{2}\sqrt{\frac{{8(1+2{k^2}-{m^2})}}{{{{(1+2{k^2})}^2}}}}=\frac{|m|}{2}\sqrt{\frac{{8(2{m^2}-{m^2})}}{{4{m^4}}}}=\frac{{\sqrt{2}}}{2}$,
∴${S_{EMFN}}=4{S_{△OEM}}=2\sqrt{2}$.
当直线EM斜率不存在时,${k_{OE}}•{k_{OM}}=\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=-\frac{1}{2}$,x1=x2,y1=-y2,∴${k_{OE}}•{k_{OM}}=-\frac{{{y_1}^2}}{{{x_1}^2}}=-\frac{1}{2}$,
又$\frac{x_1^2}{2}+y_1^2=1$,解得$x_1^2=1,y_1^2=\frac{1}{2}$,${S_{EMFN}}=2\sqrt{2}$.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、斜率计算公式、平行四边形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)>f(cosA) | B. | f(sinA)>f(cosB) | C. | f(sinC)<f(cosB) | D. | f(sinC)>f(cosB) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2} | B. | {1,2} | C. | {1,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{π}{6}$ | B. | $-\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\sqrt{2}$ | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$-1 | D. | $\frac{\sqrt{2}}{2}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com