精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为,点A的坐标为(1+), =m· (m为常数),

(1)求以M、N为焦点且过点P的椭圆方程;
(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求λ1+λ2的值。

解:(1)设M(-c,0),N(c,0)(c>0),P(x0,y0),则=(2c,0)·(x0,y0)=2cx0,
2cx0=2c,故x0="1.                                                            " ①
又∵S△PMN= (2c)|y0|=,y0=.                                            ②
=(x0+c,y0),=(1+),由已知(x0+c,y0)=m(1+),即
(x0+c)=(1+)y0.                                  ③
将①②代入③,(1+c)=(1+,c2+c-(3+)=0,(c-)(c++1)=0,
∴c=,y0=.                                                 
设椭圆方程为=1(a>b>0).
∵a2=b2+3,P(1,)在椭圆上,
=1.故b2=1,a2=4.
∴椭圆方程为+y2="1.                                                      " 6分
(2)①当l的斜率不存在时,l与x=-4无交点,不合题意.

②当l的斜率存在时,设l方程为y=k(x+1),
代入椭圆方程+y2=1,
化简得(4k2+1)x2+8k2x+4k2-4="0.                                                " 8分
设点C(x1,y1)、D(x2,y2),则

∵-1=
∴λ1=.                                               9分
λ1+λ2=[2x1x2+5(x1+x2)+8],
而2x1x2+5(x1+x2)+8=2·+5·(8k2-8-40k2+32k2+8)=0,
∴λ1+λ2="0.                                                              " 12分
22、(文)解:(1)当n≥2时,an=Sn-Sn-1=2an-4-2an-1+4,
即得an=2an-1,
当n=1时,a1=S1=2a1-4=4,∴an="2n+1.                                          "  3分
∴bn+1=2n+1+2bn.∴=1.
∴{}是以1为首项,以1为公差的等差数列.
=1+(n-1)×1=n∴bn="n·2n.                                              " 6分
(2)Tn="1·2+2·22+…+n·2n,                                             " ①
2Tn="1·22+2·23+…+(n-1)·2n+n·2n+1,                                "       ②
①-②,得-Tn=2+22+23+…+2n-n·2n+1=n·2n+1,
∴Tn="(n-1)·2n+1+2.                                         "       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)(注意:在试题卷上作答无效)
已知的顶点A在射线上,两点关于x轴对称,0为坐标原点,
且线段AB上有一点M满足当点A在上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设是否存在过的直线与W相交于P,Q两点,使得若存在,
求出直线;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆C:的左焦点和右焦点,O是坐标系原点, 且椭圆C的焦距为6, 过的弦AB两端点A、B与所成的周长是.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点是椭圆C上不同的两点,线段的中点为,
求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是(   ).
A.直线B.抛物线C.双曲线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、中心在原点、焦点在x轴上的双曲线的实轴长与虚轴长相等,并且焦点到渐近线的距离为,则双曲线方程为___________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设坐标原点为O,抛物线与过焦点的直线交于A、B两点,则="        " .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如下图,过抛物线y2=4x焦点的直线依次交抛物线与圆于A,B,C,D,则·=            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A是椭圆(是参数)的左焦点,P是椭圆上对应于的点,那么线段AP的长是
A.1B.5 C.7 D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左、右焦点分别为,抛物线
顶点在原点,它的准线与双曲线的左准线重合,若双曲线与抛物线的交点
,则双曲线的离心率为
A.B.C.D.2

查看答案和解析>>

同步练习册答案