精英家教网 > 高中数学 > 题目详情

如图已知抛物线的焦点坐标为,过的直线交抛物线两点,直线分别与直线相交于两点.

(1)求抛物线的方程;

(2)证明△ABO与△MNO的面积之比为定值.

 

【答案】

(1);(2)证明过程详见解析.

【解析】

试题分析:本题主要考查抛物线、直线的方程,以及直线与抛物线的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等.第一问,利用抛物线的标准方程,利用焦点坐标求出,代入即可;第二问,讨论直线垂直和不垂直轴2种情况,当直线垂直于轴时,2个三角形相似,面积比为定值,当直线不垂直于轴时,设出直线的方程,设出四个点坐标,利用直线与抛物线相交列出方程组,消参得到方程,利用两根之积得为定值,而面积比值与有关,所以也为定值.

试题解析:(1)由焦点坐标为  可知

所以,所以抛物线的方程为                      5分

(2)当直线垂直于轴时,相似,

所以,                        7分

当直线与轴不垂直时,设直线AB方程为,

整理得,                      9分

所以,                                         10分

,

综上                                12分

考点:1.抛物线的标准方程;2.直线方程;3.根与系数关系;4.三角形面积公式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为
π
3
的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)设G,H是抛物线C上异于原点O的两个不同点,且
OG
OH
=0
,求△GOH面积的最小值;
(3)在抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为
π3
的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)试探究抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三上学期第三次统练文科数学试卷(解析版) 题型:解答题

如图,已知抛物线的焦点为F,过F的直线交抛物线于M、N两点,其准线与x轴交于K点.

(1)求证:KF平分∠MKN;

(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三5月高考三轮模拟文科数学试卷(解析版) 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(1)求抛物线的方程及其准线方程;

(2)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

 

查看答案和解析>>

同步练习册答案