精英家教网 > 高中数学 > 题目详情
设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.
(1)f(x)=(2)
(1)∵当且仅当x=-2时,函数f(x)取得最小值-2.
∴二次函数y=x2+bx+c的对称轴是x=-=-2.
且有f(-2)=(-2)2-2b+c=-2,即2b-c=6.
∴b=4,c=2.∴f(x)=
(2)记方程①:2=x+a(x>0),
方程②:x2+4x+2=x+a(x≤0).
分别研究方程①和方程②的根的情况:
(ⅰ)方程①有且仅有一个实数根?a<2,方程①没有实数根?a≥2.
(ⅱ)方程②有且仅有两个不相同的实数根,即方程x2+3x+2-a=0有两个不相同的非正实数根.∴??-<a≤2;

方程②有且仅有一个实数根,即方程x2+3x+2-a=0有且仅有一个非正实数根.
∴2-a<0或Δ=0,即a>2或a=-.
综上可知,当方程f(x)=x+a(a∈R)有三个不相同的实数根时,-<a<2;
当方程f(x)=x+a(a∈R)有且仅有两个不相同的实数根时,a=-或a=2.
∴符合题意的实数a取值的集合为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数对任意的恒有成立.
(1)当b=0时,记)上为增函数,求c的取值范围;
(2)证明:当时,成立;
(3)若对满足条件的任意实数b,c,不等式恒成立,求M的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若上存在零点,求实数的取值范围;
(2)当时,若对任意的,总存在使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”. 下列函数中存在唯一“可等域区间”的“可等域函数”为(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,则f +f =________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N),前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系式;
(2)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在上的零点个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点P(x,y),若lgy,lg|x|,lg成等差数列,则点P的轨迹图象是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某种产品今年产量为1000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件.

查看答案和解析>>

同步练习册答案