精英家教网 > 高中数学 > 题目详情
椭圆
x2
25
+
y2
16
=1
上一点P到它的左焦点F1的距离为6,则点P到椭圆右准线的距离为 ______.
根据椭圆的第二定义可知P到F1的距离与其到准线的距离之比为离心率,
依题意可知a=5,b=4
∴c=
25-16
=3
∴e=
c
a
=
3
5
,准线方程为x=±
a2
c
25
3

∴P到椭圆左准线的距离为
6
e
=10
∴点P到椭圆右准线的距离2×
25
3
-10=
10
3

故答案为
20
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
25
+
y2
16
=1
的离心率为(  )
A、
3
5
B、
4
5
C、
3
4
D、
16
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为椭圆
x2
25
+
y2
16
=1
上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为(  )
A、5B、7C、13D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)若AB过椭圆 
x2
25
+
y2
16
=1 中心的弦,F1为椭圆的焦点,则△F1AB面积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若 P为椭圆
x2
25
+
y2
16
=1
上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-
1
2
|PF1|

(2)若F1PF2=600,求|PF1|•|PF2|之值;
(3)椭圆上是否存在点P,使
PF1
PF2
=0
,若存在,求出P点的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知三角形ABC顶点A(-3,0)和C(3,0),顶点B在椭圆
x2
25
+
y2
16
=1上,则
sinA+sinC
sinB
=
 

查看答案和解析>>

同步练习册答案