精英家教网 > 高中数学 > 题目详情
如图,已知A、B、C、D分别为过抛物线y2=4x焦点F的直线与该抛物线和圆(x-1)2+y2=1的交点,则|AB|•|CD|=______.
若直线的斜率不存在,则直线方程为x=1,代入抛物线方程和圆的方程,
可直接得到ABCD四个点的坐标为(1,2)(1,1)(1,-1)(1,-2),
所以AB=1,CD=1,
从而|AB•CD|=1.
若直线的斜率存在,设为k,则直线方程为y=k(x-1),因为直线过抛物线的焦点(1,0)
不妨设A(xa,ya),B(xb,yb),过AB分别作抛物线准线的垂线,由抛物线的定义,
|AF|=xa+1,|DF|=xb+1,
把直线方程与抛物线方程联立,消去y可得
k2x2-(2k2+4)x+k2=0,由韦达定理有 xaxb=1
而抛物线的焦点F同时是已知圆的圆心,所以|BF|=|CF|=R=1
从而有|AB|=|AF|-|BF|=xa,|CD|=|DF|-|CF|=xb
所以|AB•CD|=xaxb=1
故答案为:1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为为上顶点,为坐标原点,若△的面积为,且椭圆的离心率为
(1)求椭圆的方程;
(2)是否存在直线交椭圆于两点, 且使点为△的垂心?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=4x2的准线方程是(  )
A.y+1=0B.x+1=0C.16y+1=0D.16x+1=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=4px(p>0)上一点M到焦点的距离为a,则M到y轴距离为(  )
A.a-pB.a+pC.a-
p
2
D.a+2p

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(0,1)及抛物线y=x2+2,Q是抛物线上的动点,则|PQ|的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x上的一点M到焦点的距离是5,且点M在第一象限,则M的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l与抛物线C:y2=4x相交于A、B两点,若线段AB的中点为D(2,2),则直线l的方程为(  )
A.y=
1
2
x+1
B.y=-x+4C.y=xD.y=2x-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)焦点的直线交抛物线于A、B两点,则|AB|的最小值为(  )
A.
p
2
B.pC.2pD.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y=x2+4ax-4a+3,y=x2+2ax-2a至少有一条与x轴相交,求实数a的取值范围.

查看答案和解析>>

同步练习册答案