精英家教网 > 高中数学 > 题目详情

设函数g(x)=g(数学公式)lnx+1,则g(e)=________.(其中e为自然对数的底数)

1
分析:由g(x)=g()lnx+1,知,由此能求出g(e).
解答:∵g(x)=g()lnx+1,

解得g(e)=1.
故答案为:1.
点评:本题考查函数值的求法,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1)(x∈R),则函数g(x)的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•乐山二模)设函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取得极小值-
23

(1)求函数f(x)的解析式;
(2)当x∈[-1,1]时,函数f(x)的图象上是否存在两点,使得过此两点处的切线相互垂直?试说明你的结论;
(3)设f(x)表示的曲线为G,过点(1,-10)作曲线G的切线l,求l的方程.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案