精英家教网 > 高中数学 > 题目详情
18.如图在多面体ABC-A1B1C1中,AA1$\underset{∥}{=}$BB1,B1C1$\underset{∥}{=}$$\frac{1}{2}$BC,求证:AB1∥平面 A1C1C.

分析 取BC的中点D,连接AD,DC1,则四边形B1DCC1和BDC1B1为平行四边形,从而可证平面AB1D∥平面A1C1C,即可得到AB1∥平面A1C1C.

解答 证明:取BC的中点D,连接AD,DC1,则CD平行且等于B1C1,BD平行且等于B1C1
∴四边形B1DCC1和BDC1B1为平行四边形,
∴B1D平行且等于CC1,∴C1D平行且等于B1B,
由B1B平行且等于AA1,∴C1D平行且等于A1A,
∴四边形AA1C1D为平行四边形,
∴AD∥A1C1
∵B1D∩AD=D,B1D,AD?平面AB1D,
∴平面AB1D∥平面A1C1C,
∵AB1?平面AB1D,
∴AB1∥平面A1C1C.

点评 本题主要考查了直线与平面平行的判定,平面与平面平行的判定,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ax(a>0,a≠1),其导函数为f′(x),满足f(x)<f′(x)对于任意实数x恒成立,则(  )
A.f(1)>e,f(2012)>e2012B.f(1)>e,f(2012)<e2012
C.f(1)<e,f(2012)>e2012D.f(1)<e,f(2012)<e2012

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若f(x)=x2-x+b,且f(log2a)=b,log2|f(a)|=2(a≠1),当满足log2(2-x)≤2时,求f(2x)的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex-ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)函数F(x)=f(x)-xlnx在定义域内存在零点,求a的取值范围;
(3)若g(x)=ln(ex-1)-lnx,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=lg(x+1)-ln(1-x)的定义域为A,g(x)=$\sqrt{2x-1}$的定义域为B,则A∩B=(  )
A.(-∞,1)B.(-1,$\frac{1}{2}$]C.[$\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设点A(x0,y0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上的定点(x0≠±a)…又E,F是C上的两个动点直线AE,AF的斜率互为相反数.证明:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在R上的函数f(x)在[8,+∞)上为减函数,且函数y=f(x+8)为奇函数,则f(x)的图象关于(8,0)对称,且f(x)在(-∞,8)上为减函数(填增、减).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=lg(12+x-x2)的单调递增区间是(-3,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,∠B=45°,AC=$\sqrt{5}$,cosC=$\frac{{3\sqrt{10}}}{10}$,求
(1)BC的长
(2)若点D是AB的中点,求中线CD的长度.

查看答案和解析>>

同步练习册答案