精英家教网 > 高中数学 > 题目详情

已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点轨迹方程.

解:圆(x+1)2+y2=4的圆心为P(-1,0),半径长为2,(4分)
线段AB中点为M(x,y)(5分)
取PB中点N,其坐标为(),即N()(7分)
∵M、N为AB、PB的中点,
∴MN∥PA且MN=PA=1.(9分)
∴动点M的轨迹为以N为圆心,半径长为1的圆.
所求轨迹方程为:(12分)
分析:利用M、N为AB、PB的中点,根据三角形中位线定理得出:MN∥PA且MN=PA=1,从而动点M的轨迹为以N为圆心,半径长为1的圆.最后写出其轨迹方程即可.
点评:本题考查轨迹方程,利用的是定义法,定义法是若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知线段AB的端点B的坐标为(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程,并说明M的轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线段AB的端点B的坐标为(1,3),端点A在圆C:(x+1)2+y2=4上运动.
(1)求线段AB的中点M的轨迹;
(2)过B点的直线L与圆C有两个交点A,D.当CA⊥CD时,求L的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线段AB的端点B的坐标是(3,4),端点A在圆(x+2)2+(y-1)2=2上运动,则线段AB的中点M的轨迹方程是
(2x-1)2+(2y-5)2=2
(2x-1)2+(2y-5)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线段AB的端点B的坐标是(-1,0),端点A在圆(x-7)2+y2=16上运动,
(1)求线段AB中点M的轨迹方程;
(2)点C(2,a),若过点C且在两坐标轴上截距相等的直线与圆相切,求a的值及切线方程.

查看答案和解析>>

同步练习册答案