精英家教网 > 高中数学 > 题目详情
在三棱锥S-ABC中,△ABC是边长为4的正三角形,SB=2
5
SA=SC=2
3
,M、N分别是AB、SB的中点;
(1)证明:平面SAC⊥平面ABC;
(2)求直线MN与平面SBC所成角的正弦值.
精英家教网

精英家教网
(1)证明:取AC中点D,连SD,BD,
∵SA=SC,∴SD⊥AC
∵△ABC是边长为4的正三角形,SB=2
5
SA=SC=2
3

SD=2
2
BD=2
3

∴SD⊥BD
∵AC∩BD=D
∴SD⊥平面ABC
∵SD?平面SAC
∴平面SAC⊥平面ABC;..(6分)
(2)以D为原点,DA为x轴,DB为y轴,DS为z轴建立空间直角坐标系,则A(2,0,0),C(-2,0,0),B(0,2
3
,0)
S(0,0,2
2
)
M(1,
3
,0)
N(0,
3
2
)

MN
=(-1,0,
2
)
CS
=(2,0,2
2
)
CB
=(2,2
3
,0)

设平面SCB的法向量为
n
=(x,y,z)
,则有
2x+2
2
z=0
2x+2
3
y=0

令x=1,得到
n
=(1,-
3
3
,-
2
2
)
….…..(8分)
设直线MN与平面SBC所成角为θ,则sinθ=|cos<
n
MN
>|=
2
22
11
…..(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为边长为1的等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)证明:SA⊥BC;
(Ⅲ)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O为BC中点.
(1)求证:SO⊥平面ABC
(2)在线段AB上是否存在一点E,使二面角B-SC-E的平面角的余弦值为
15
5
?若存在,确定E点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,侧棱SC⊥平面SAB,SA⊥BC,侧面△SAB,△SBC,△SAC的面积分别为1,
3
2
,3,则此三棱锥的外接球的表面积为(  )

查看答案和解析>>

同步练习册答案