精英家教网 > 高中数学 > 题目详情
若Sn是公差不为0的等差数列{an}的前n项和,则S1,S2,S4成等比数列.
(1)求数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)在(2)条件下,若bn=an-14,求{|bn|}的前n项和Tn
分析:(1)利用等差数列与等比数列的定义及其通项公式即可得出;
(2)利用等差数列的通项公式即可得出;
(3)通过分类讨论,利用等差数列的前n项和公式即可得出.
解答:解:(1)设等差数列{an}的公差为d,
S
2
2
=S1S4得出(2a1+d)2=a1(4a1+6d),化为d=2a1
S2
S1
=
2a1+d
a1
=4,
∴数列S1,S2,S4的分比为4.
(2)由S2=4=2a1+d=4a1得出a1=1,d=2,
∴an=2n-1.
(3)由(2)可得bn=2n-1-14=2n-15.
令bn=2n-15>0,
得n>
15
2

∴当n≤7时,Tn=-[(2-15)+(4-15)+…+(2n-15)]=-(
n(n+1)
2
-15n
)=14n-n2
当n≥8时,Tn=-b1-b2-…-b7+b8+…+bn
=b1+b2+…+bn-2(b1+b2+…+b7
=
n(-13+2n-15)
2
+2T7
=n2-14n+98.
Tn=
14n-n2,n≤7
n2-14n+98,n≥8
点评:熟练掌握等差数列与等比数列的定义及其通项公式、分类讨论、等差数列的前n项和公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.
(Ⅰ)求数列S1,S2,S4的公比.
(Ⅱ)若S2=4,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.
(1)求等比数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最大正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.
(1)求等比数列S1,S2,S4的公比; 
(2)若S2=4,求{an}的通项公式;
(3)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,S1,S2,S4成等比数列,且S2=4,设bn=
1
anan+1
,则新数列{bn}的前n项和为
n
2n+1
n
2n+1

查看答案和解析>>

同步练习册答案