精英家教网 > 高中数学 > 题目详情
6.若sin4θ+co4sθ=1,则sinθcosθ的值为0.

分析 先利用同角三角函数及二倍角公式对sin4θ+cos4θ化简整理求的sin22θ=0,进而求得sinθcosθ的值.

解答 解:sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2sin2θcos2θ=1,
∴2sin2θcos2θ=0,
∴sinθcosθ=0.
故答案为:0.

点评 本题主要考查了同角三角函数基本关系,二倍角公式的应用.考查了学生创造思维和分析问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.三棱锥P-ABC三条侧棱两两垂直,三条侧棱长分别为1,$\sqrt{5}$,$\sqrt{10}$,则该三棱锥的外接球体积为(  )
A.$\frac{32}{3}$πB.$\frac{16}{3}$πC.32πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数y=$\frac{1}{\sqrt{a{x}^{2}-ax+1}}$的定义域R,则实数a的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在空间四边形ABCD中,E是线段AB的中点.
(1)若CF=2FD,连接EF,CE,AF,BF化简下列各式,并在图中标出化简得到的向量:
①$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{BD}$;
②$\overrightarrow{AF}$-$\overrightarrow{BF}$-$\overrightarrow{AC}$;
③$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CD}$;
(2)若F为CD的中点,求证:$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知动点P的坐标(x,y)满足$\frac{\sqrt{(x-1)^{2}+(y-1)^{2}}}{\frac{|x+y+2|}{\sqrt{2}}}$=$\frac{1}{2}$,则动点P的轨迹是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)以极坐标系Ox为极点O为原点,极轴Ox为x轴正半轴建立平面直角坐标系xOy,并在两种坐标系中取相同的长度单位,把极坐标方程cosθ+ρ2sinθ=1化成直角坐标方程.
(2)在直角坐标系xOy中,曲线C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),过点P(2,1)的直线与曲线C交于A,B两点.若|PA|•|PB|=$\frac{8}{3}$,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两平行线4x+3y+5=0与4x+3y+15=0之间的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知O是平面内任意一点,α是任意角,下列等式一定可以判定A,B,C三点共线的是(  )
A.$\overrightarrow{OC}$=sinα$\overrightarrow{OA}$+cosα$\overrightarrow{OB}$B.$\overrightarrow{OC}$=sin2α$\overrightarrow{OA}$+cos2α$\overrightarrow{OB}$
C.$\overrightarrow{OC}$=sinα$\overrightarrow{OA}$-cosα$\overrightarrow{OB}$D.$\overline{OC}$=sin2α$\overrightarrow{OA}$-cos2α$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左、右焦点分别是F1,F2,点P为椭圆C上任意一点,且△PF1F2面积最大值为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)过F2作垂直于x轴的直线l交椭圆于A、B两点(点A在第一象限),M、N是椭圆上位于直线l两侧的动点,若∠MAB=∠NAB,求证:直线MN的斜率为定值.

查看答案和解析>>

同步练习册答案