(本小题12分)已知
(Ⅰ)若,求使函数为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。
(1)(2)-或
解析试题分析:解:(1) f (x)=sin(2x+θ)+cos(2x+θ)
=2sin(2x+θ+)……………………4分
要使f (x)为偶函数,则必有f (-x)=f (x)
∴ 2sin(-2x+θ+)=2sin(2x+θ+)
∴ 2sin2x cos(θ+)=0对x∈R恒成立
∴ cos(θ+)=0又0≤θ≤π θ=……………………7分
(2) 当θ=时f (x)=2sin(2x+)=2cos2x=1
∴cos2x= ∵x∈[-π,π] ∴x=-或………………12分
考点:本试题考查了三角函数函数的图像性质。
点评:解决该试题的关键是利用偶函数的定义,得到参数的方程,进而得到参数的值,同时能利用对称轴处函数值为最值,进而求解得到x的取值集合,属于中档题。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com