| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 由[x]≤x,可得0<x≤1,讨论x=1和0<x<1,结合函数的单调性和零点存在定理,即可得到所求解的个数.
解答 解:由[x]≤x,即有x+log2x=[x]≤x,
即log2x≤0,可得0<x≤1,
当x=1时,有1+log21=1成立;
当0<x<1时,[x]=0,即有x+log2x=0,
令f(x)=x+log2x,f(x)在(0,1)递增,
f($\frac{1}{2}$)=$\frac{1}{2}$-1<0,f(1)=1>0,
则f(x)在(0,1)有且只有一个零点,
即方程仅有一解.
综上可得原方程的解有两个.
故选C.
点评 本题考查方程的解的个数,考查函数零点存在定理的运用,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | {-1,1} | C. | {-1,0,1} | D. | [-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=(x-1)2 | B. | f(x)=2-x | C. | y=log0.5(x+1) | D. | $y=\sqrt{x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com