精英家教网 > 高中数学 > 题目详情
是椭圆上的点,是椭圆的两个焦点,,则 的面积等于______________.

试题分析:根据焦点三角形的面积公式s==.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率为
(1)求椭圆的方程;
(2)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点,试问以线段为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设圆锥曲线r的两个焦点分别为,若曲线r上存在点P满足,则曲线r的离心率等于(   )
A.
B.或2
C.或2
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点为,点在椭圆上,如果线段的中点在轴上,那么的(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C的焦点、实轴端点恰好是椭圆的长轴的端点、焦点,则双曲线C的方程为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对,直线与椭圆恒有公共点,则实数的取值范围是
A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:














据此,可推断椭圆的方程为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1∶x=的距离之比为常数.
(1)求曲线C的轨迹方程;
(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求·的最小值,并求此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0),点P在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足AQ=AO,求直线OQ的斜率的值.

查看答案和解析>>

同步练习册答案