精英家教网 > 高中数学 > 题目详情
(2012•台州模拟)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求△ABC的面积的最大值.
分析:(Ⅰ)利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理求得cosB的值,从而求得B.
(Ⅱ)由余弦定理得可得a2+c2-ac=4,结合a2+c2-ac≥ac,可求得ac的最大值,代入△ABC的面积公式,可得答案.
解答:解:(Ⅰ)由题意,∵(2a-c)cosB=bcosC,由正弦定理得:(2sinA-sinC)cosB=sinBcosC,
∴2sinA•cosB-sinC•cosB=sinBcosC,化为:2sinA•cosB=sinC•cosB+sinBcosC,
∴2sinA•cosB=sin(B+C).
∵在△ABC中,sin(B+C)=sinA,
∴2sinA•cosB=sinA,解得:cosB=
1
2
,故B=
π
3

(Ⅱ)若b=2,由余弦定理得:a2+c2-2ac•cos
π
3
=4,即a2+c2-ac=4
又a2+c2-ac≥2ac-ac=ac,即ac≤4(取=时,a=c=
3
),
故△ABC的面积S=
1
2
ac•sinB≤
1
2
×4×
3
2
=
3
,故△ABC的面积的最大值为
3
点评:本题以三角形为载体,主要考查了正弦定理的运用,考查两角和公式、诱导公式,以及基本不等式的应用.考查了学生综合分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•台州模拟)已知函数f(x)=lnx-
1
2
ax2-2x(a<0)
(Ⅰ)若函数f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)若a=-
1
2
且关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则原点O(0,0)与直线2x+y-
5
=0
上一点P(x,y)的“折线距离”的最小值是
5
2
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)已知函数f(x)=log2(ax2+2x-3a).
(Ⅰ)当a=-1时,求该函数的定义域和值域;
(Ⅱ)如果f(x)≥1在区间[2,3]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)在边长为6的等边△ABC中,点M满足
BM
=2
MA
,则
CM
CB
等于
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)设|
a
|=|
b
|=|
a
+
b
|≠0
,那么
a
-
b
b
的夹角为(  )

查看答案和解析>>

同步练习册答案