精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数,( ),若对任意,总存在,使得成立,则的取值范围是__________

【答案】

【解析】对函数f(x)求导可得

f′(x)=0解得.x变化时,f′(x),f(x)的变化情况如下表所示:

x

0

1

f(x)

 

0

+

 

f(x)

单调递减

4

单调递增

3

所以,,f(x)是减函数;,f(x)是增函数。

x∈[0,1],f(x)的值域是[4,3].

对函数g(x)求导,g′(x)=3(x2a2).

因为a1,x∈(0,1),g′(x)<3(1a2)0,

因此当x∈(0,1),g(x)为减函数,

从而当x∈[0,1]时有g(x)∈[g(1),g(0)],

g(1)=12a3a2,g(0)=2a,

即当x∈[0,1]时有g(x)∈[12a3a2,2a],

任给x1∈[0,1],f(x1)∈[4,3],存在x0∈[0,1]使得g(x0)=f(x1),

[12a3a2,2a][4,3],

解①式得a1a

解②式得a

a1,a的取值范围内是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)的解析式满足
(1)求函数f(x)的解析式;
(2)当a=1时,试判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;
(3)当a=1时,记函数 ,求函数g(x)在区间 上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 为参数)和定点 是此圆锥曲线的左、右焦点.

(1)以原点为极点,以轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;

(2)经过且与直线垂直的直线交此圆锥曲线 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面为矩形, 为棱上一点,平面与棱交于点.

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)若,试问平面是否可能与平面垂直?若能,求出值;若不能,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在 两家餐厅用餐的满意度,从在 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以10为组距分成6组: ,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:

(Ⅰ)在抽样的100人中,求对餐厅评分低于30的人数;

(Ⅱ)从对餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;

(Ⅲ)如果从 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线是过点,倾斜角为的直线,以直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求曲线的普通方程和曲线的一个参数方程;

(2)曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像经过点,曲线在点处的切线恰好与直线垂直.

(1)求实数的值;

(2)求在函数图像上任意一点处切线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: ()的右焦点为F(2,0),且过点P(2, ). 直线过点F且交椭圆C于A、B两点.

1求椭圆C的方程

2若线段AB的垂直平分线与x轴的交点为M(),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点,求的值.

查看答案和解析>>

同步练习册答案