精英家教网 > 高中数学 > 题目详情
(2012•湖南模拟)下列说法正确的是(  )
分析:根据题意,依次分析命题:对于A,根据题意,举出反例,有-1<2,则f(-1)<f(2),A错误;对于B,由三角形全等则三角形面积相等,反之三角形面积相等推不出三角形全等,分析可得两个三角形全等是这两个三角形面积相等的充分条件,B错误;对于C,根据命题的否定可得“?x∈R,x2+x+1>0”的否定,C错误;对于D,由P∧q是真命题,可得P为真命题,那么?P是假命题,D正确;即可得答案.
解答:解:根据题意,依次分析命题:
对于A,对于f(x)=
1
x
,有-1<2,则f(-1)<f(2),则该函数不是减函数,A错误;
对于B,若三角形全等则三角形面积相等,反之三角形面积相等推不出三角形全等,则两个三角形全等是这两个三角形面积相等的充分条件,B错误;
对于C,命题“?x∈R,x2+x+1>0”的否定是“?x∈R,x2+x+1≤0”,C错误;
对于D,若P∧q是真命题,则P为真命题,那么?P是假命题,D正确.
故选D.
点评:本题考查命题真假的判断,考查知识点较多,关键是掌握相关的知识点并能根据题意举出反例.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判断f(x)的单调性;
(2)记φ(x)=f′(x-1)-k(x-1),若函数φ(x)有两个零点x1,x2(x1<x2),求证:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函数f(x)=
m
n

(1)求函数f(x)的对称中心;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设函数y=f(x)在区间(a,b)的导函数f′(x),f′(x)在区间(a,b)的导函数f″(x),若在区间(a,b)上的f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若当实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设曲线y=xn+1(n∈N)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•x3•…•x2012的值为
1
2013
1
2013

查看答案和解析>>

同步练习册答案